Some Bryophytes Trigger Cytotoxicity of Stem Cell-like Population in 5-Fluorouracil Resistant Colon Cancer Cells

Dilsad Ozerkan1*, Ayse Erol2, Ergin Murat Altuner3, Kerem Canli4, Durdane Serap Kuruca5

1Istinye University, Faculty of Health Sciences, Molecular Cancer Research Center, Istanbul, Turkey
2Istanbul University, Faculty of Medicine, Department of Medical Biology, Istanbul, Turkey
3Kastamonu University, Faculty of Science and Arts, Department of Biology, TR 37150 Kastamonu, Turkey
4Dokuz Eylul University, Faculty of Science, Department of Biology, Izmir, Turkey
5Istanbul University, Faculty of Medicine, Department of Physiology, Istanbul, Turkey

* Corresponding author: dilsadokan@gmail.com

Colorectal cancer is the third most common cancer worldwide. Cancer stem cells are known to play an important role in relapse, and metastases of the disease after chemotherapy. Investigation of new drugs, and their combinations targeting these cells and thus eliminating cancer is one of the most urgent needs of today’s chemotherapy. The aim of the present study was to evaluate the effects of Bryophytes like Abietinella abietina (AA), Homolothecium sericeum (HS), Tortella tortuosa (TT), Syntrichia ruralis (SR), and Bryoerythrophyllum rubrum (BR) species extracted with ethyl alcohol on 5-fluorouracil(5-FU) resistant colorectal cancer cell lines (HCT116 and HT29). After extraction, stock solutions of bryophytes were prepared, and IC50 values were detected in drug-resistant cells obtained with 5-FU application. CD24+, CD44+/CD133+ surface markers and P‐glycoprotein (P-gp) mediated efflux were isolated from both 5-FU treated cells and analyzed using the flow cytometry. In all bryophyte-treated groups, the binding Rho123low (low Rho fluorescence) and Rhohigh (high Rho fluorescence) were sorted from 5-FU resistant HCT116, and HT-29 cells. All types of bryophytes were found cytotoxic. Bryophyte extract reduced the percentage of Rholow cells in cultures incubated with 5-FU. In summary, the implementation of these bryophytes might be regarded as an effective approach for treatment of colorectal cancer due to their cytotoxic effect that decreases the recurrence of the disease.
Keywords: Bryophytes, Colon Cancer, Abietinella abietina, Homolothecium sericeum, Tortella tortuosa, Syntrichia ruralis, Bryoerythrophyllum rubrum

How to cite: Ozerkan D, Erol A, Altuner EM, Canli K, Kuruca DS. (2022). Some Bryophytes Trigger Cytotoxicity of Stem Cell-like Population in 5-Fluorouracil Resistant Colon Cancer CellsNutrition and Cancer, 74(3), 1012-1022.

References
  • Marley AR, Nan H. Epidemiology of colorectal cancer. Int J Mol Epidemiol Genet. 2016;7(3):105-14./li>
  • Balchen V, Simon K. Colorectal cancer development and advances in screening. CIA. 2016;11:967-76.
  • Sargent D, Sobrero A, Grothey A, O’Connell MJ, Buyse M, Andre T, Zheng Y, Green E, Labianca R, O’Callaghan C, et al. Evidence for cure by adjuvant therapy in colon cancer: observations based on individual patient data from 20,898 patients on 18 randomized trials. J Clin Oncol. 2009;27(6):872-7. doi:https://doi.org/10.1200/JCO.2008.19.5362
  • Renouf DJ, Woods R, Speers C, Hay J, Terry Phang P, Fitzgerald C, Kennecke H. Improvements in 5-year outcomes of stage II/III rectal cancer relative to colon cancer. Am J Clin Oncol. 2013;36(6):558-64. doi:https://doi.org/10.1097/COC.0b013e318256f5dc
  • Brown KM, Xue A, Mittal A, Samra JS, Smith R, Hugh TJ. Patient-derived xenograft models of colorectal cancer in pre-clinical research: a systematic review. Oncotarget. 2016;7(40):66212-25. doi:https://doi.org/10.18632/oncotarget.11184
  • Gao XM, Zhang R, Dong QZ, Qin LX. Properties and feasibility of using cancer stem cells in clinical cancer treatment. Cancer Biol Med. 2016;13(4):489-95.
  • Dean M, Fojo T, Bates S. Tumour stem cells and drug resistance. Nat Rev Cancer. 2005;5(4):275-84. doi:https://doi.org/10.1038/nrc1590
  • Yu F, Yao H, Zhu P, Zhang X, Pan Q, Gong C, Huang Y, Hu X, Su F, Lieberman J, et al. let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell. 2007;131(6):1109-23. doi:https://doi.org/10.1016/j.cell.2007.10.054
  • Levina V, Marrangoni AM, DeMarco R, Gorelik E, Lokshin AE. Drug-selected human lung cancer stem cells: cytokine network, tumorigenic and metastatic properties. PLoS One. 2008;3(8):e3077. doi:https://doi.org/10.1371/journal.pone.0003077
  • Jordan CT. Cancer stem cells: controversial or just misunderstood?Cell Stem Cell. 2009;4(3):203-5. doi:https://doi.org/10.1016/j.stem.2009.02.003
  • Chiodi I, Belgiovine C, Donà F, Scovassi AI, Mondello C. Drug treatment of cancer cell lines: a way to select for cancer stem cells. Cancers (Basel). 2011;3(1):1111-28. doi:https://doi.org/10.3390/cancers3011111
  • Balla MM, Ningthoujam RS, Kumar M, Bandekar JR, Pandey BN. Cellular and spectroscopic characterization of cancer stem cell-like cells derived from A549 lung carcinoma. J Cancer Res Ther. 2016;12(3):1144-52.
  • Vescovi AL, Galli R, Reynolds BA. Brain tumour stem cells. Nat Rev Cancer. 2006;6(6):425-36. doi:https://doi.org/10.1038/nrc1889
  • Chaffer CL, Weinberg RA. A perspective on cancer cell metastasis. Science. 2011;331(6024):1559-64. doi:https://doi.org/10.1126/science.1203543
  • Grillet F, Bayet E, Villeronce O, Zappia L, Lagerqvist EL, Lunke S, Charafe-Jauffret E, Pham K, Molck C, Rolland N, et al. Circulating tumour cells from patients with colorectal cancer have cancer stem cell hallmarks in ex vivo culture. Gut. 2017;66(10):1802-10. doi:https://doi.org/10.1136/gutjnl-2016-311447
  • Clevers H. The cancer stem cell: premises, promises and challenges. Nat Med. 2011;17(3):313-9. doi:https://doi.org/10.1038/nm.2304
  • Malik B, Nie D. Cancer stem cells and resistance to chemo and radio therapy. Front Biosci. 2012;E4(6):2142-9. doi:https://doi.org/10.2741/531
  • Sahlberg SH, Spiegelberg D, Glimelius B, Stenerlöw B, Nestor M. Evaluation of cancer stem cell markers CD133, CD44, CD24: association with AKT isoforms and radiation resistance in colon cancer cells. PLoS One. 2014;9(4):e94621. doi:https://doi.org/10.1371/journal.pone.0094621
  • Clardy J, Walsh C. Lessons from natural molecules. Nature. 2004;432(7019):829-37. doi:https://doi.org/10.1038/nature03194
  • D’Incalci M, Brunelli D, Marangon E, Simone M, Tavecchio M, Gescher A, Mantovani R. Modulation of gene transcription by natural products-a viable anticancer strategy. CPD. 2007;13(27):2744-50. doi:https://doi.org/10.2174/138161207781757097
  • Gu J, Gui Y, Chen L, Yuan G, Lu HZ, Xu X. Use of natural products as chemical library for drug discovery and network pharmacology. PLoS One. 2013;8(4):e62839. doi:https://doi.org/10.1371/journal.pone.0062839
  • Singh S, Srivastava K. It has been suggested that s as Green Brain: unique and indispensable small creature. Int J Pharm Sci Rev Res. 2013;23(2):28-35.
  • Zinsmeister HD, Becker H, Eicher T. Bryophytes, a source of biologically active, naturally occurring material?Angew Chem Int Ed Engl. 1991;30(2):130-47. doi:https://doi.org/10.1002/anie.199101301
  • Asakawa Y. Biologically active compounds from bryophytes. Pure Appl Chem. 2007;79(4):557-80. doi:https://doi.org/10.1351/pac200779040557
  • Asakawa Y, Ludwiczuk A, Nagashima F. Phytochemical and biological studies of bryophytes. Phytochemistry. 2013;91:52-80. doi:https://doi.org/10.1016/j.phytochem.2012.04.012
  • Dey A, Mukherjee A. Therapeutic potential of bryophytes and derived compounds against cancer. J Acute Dis. 2015;4(3):236-48. doi:https://doi.org/10.1016/j.joad.2015.04.011
  • Asakawa Y. Recent advances in phytochemistry of bryophytes-acetogenins, terpenoids and bis(bibenzyl)s from selected Japanese, Taiwanese, New Zealand, Argentinean and European liverworts. Phytochemistry. 2001;56(3):297-312. doi:https://doi.org/10.1016/S0031-9422(00)00454-4
  • Singh M, Govindarajan R, Nath V, Rawat AK, Mehrotra S. Antimicrobial, wound healing and antioxidant activity of Plagiochasma appendiculatum Lehm. et Lind. J Ethnopharmacol. 2006;107(1):67-72. doi:https://doi.org/10.1016/j.jep.2006.02.007
  • Shu YF, Wei HC, Wu CL. Sesquiterpenoids from liverworts Lepidozia vitrea and L. Fauriana. Phytochem. 1994;37(3):773-6. doi:https://doi.org/10.1016/S0031-9422(00)90356-X
  • Lu ZQ, Fan PH, Ji M, Lou HX. Terpenoids and bisbibenzyls from Chinese liverworts Conocephalum conicum and Dumortiera hirsuta. J Asian Nat Prod Res. 2006;8(1-2):187-92. doi:https://doi.org/10.1080/1028602042000325537
  • Wu C, Gunatilaka AA, McCabe FL, Johnson RK, Spjut RW, Kingston DG. Bioactive and other sesquiterpenes from Chiloscyphus rivularis. J Nat Prod. 1997;60(12):1281-6. doi:https://doi.org/10.1021/np970251u
  • Komala I, Ito T, Nagashima F, Yagi Y, Asakawa Y. Cytotoxic, radical scavenging and antimicrobial activities of sesquiterpenoids from the Tahitian liverwort Mastigophora diclados (Brid.) Nees (Mastigophoraceae). J Nat Med. 2010;64(4):417-22. doi:https://doi.org/10.1007/s11418-010-0423-8
  • Komala I, Ito T, Nagashima F, Yagi Y, Asakawa Y. Cytotoxic bibenzyls, and germacrane- and pinguisane-type sesquiterpenoids from Indonesian, Tahitian and Japanese liverworts. Nat Prod Commun. 2011;6(3):303-9.
  • Manoj GS, Kumar TR, Varghese S, Murugan K, Effect of methanolic and water extract of Leucobryum bowringii Mitt. on growth, migration and invasion of MCF 7 human breast cancer cells in vitro. Indian J Exp Biol. 2012;50:602-611.
  • Öztopcu-Vatan P, Kabadere S, Uyar R, Savaroglu F, Kus G. Time dependent cytotoxic role of Homalothecium sericeum extracts on glioma. Biol Divers Conserv. 2012;50(1):1-4.
  • Vollár M, Gyovai A, Szűcs P, Zupkó I, Marschall M, Csupor-Löffler B, Bérdi P, Vecsernyés A, Csorba A, Liktor-Busa E, et al. Antiproliferative and antimicrobial activities of selected bryophytes. Molecules. 2018;23(7):1520. doi:https://doi.org/10.3390/molecules23071520
  • Yayıntaş OT, Yılmaz S, Sökmen M. Determination of antioxidant, antimicrobial and antitumor activity of bryophytes from Mount Ida (Canakkale, Turkey). Indian J. 2019;18(2):395-401.
  • Onbasli D, Yuvali G. In vitro medicinal potentials of Bryum capillare, a moss sample, from Turkey. Saudi J. 2021;28(1):478-83. doi:https://doi.org/10.1016/j.sjbs.2020.10.031
  • Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414(6859):105-11. doi:https://doi.org/10.1038/35102167
  • Liu Y, Bodmer WF. Analysis of P53 mutations and their expression in 56 colorectal cancer cell lines. Proc Natl Acad Sci. 2006;103(4):976-81. doi:https://doi.org/10.1073/pnas.0510146103
  • Volchenboum SL, Li C, Li S, Attiyeh EF, Reynolds CP, Maris JM, Look AT, George RE. Comparison of primary neuroblastoma tumors and derivative early-passage cell lines using genome-wide single nucleotide polymorphism array analysis. Cancer Res. 2009;69(10):4143-94149. doi:https://doi.org/10.1158/0008-5472.CAN-08-3112
  • Douglas EJ, Fiegler H, Rowan A, Halford S, Bicknell DC, Bodmer W, Tomlinson IPM, Carter NP. Array comparative genomic hybridization analysis of colorectal cancer cell lines and primary carcinomas. Cancer Res. 2004;64(14):4817-25. doi:https://doi.org/10.1158/0008-5472.CAN-04-0328
  • Willson JK, Bittner GN, Oberley TD, Meisner LF, Weese JL. Cell culture of human colon adenomas and carcinomas. Cancer Res. 1987;47(10):2704-13.
  • Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997;3(7):730-7. doi:https://doi.org/10.1038/nm0797-730
  • Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C, De Maria R. Identification and expansion of human colon-cancer-initiating cells. Nature. 2007;445(7123):111-5. doi:https://doi.org/10.1038/nature05384
  • O’Brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature. 2007;445(7123):106-10. doi:https://doi.org/10.1038/nature05372
  • Fan F, Samuel S, Evans KW, Lu J, Xia L, Zhou Y, Sceusi E, Tozzi F, Ye X‐C, Mani SA, et al. Overexpression of Snail induces epithelial-mesenchymal transition and a cancer stem cell-like phenotype in human colorectal cancer cells. Cancer Med. 2012;1(1):5-16. doi:https://doi.org/10.1002/cam4.4
  • Zhang H, Li W, Nan F, Ren F, Wang H, Xu Y, Zhang F. MicroRNA expression profile of colon cancer stem-like cells in HT29 adenocarcinoma cell line. Biochem Biophys Res Commun. 2011;404(1):273-8. doi:https://doi.org/10.1016/j.bbrc.2010.11.106
  • Su YJ, Lai HM, Chang YW, Chen GY, Lee JL. Direct reprogramming of stem cell properties in colon cancer cells by CD44. Embo J. 2011;30(15):3186-99. doi:https://doi.org/10.1038/emboj.2011.211
  • Hiraga T, Ito S, Nakamura H. Cancer stem-like cell marker CD44 promotes bone metastases by enhancing tumorigenicity, cell motility, and hyaluronan production. Cancer Res. 2013;73(13):4112-22. doi:https://doi.org/10.1158/0008-5472.CAN-12-3801
  • Mahalingaiah PK, Ponnusamy L, Singh KP. Chronic oxidative stress leads to malignant transformation along with acquisition of stem cell characteristics, and epithelial to mesenchymal transition in human renal epithelial cells. J Cell Physiol. 2015;230(8):1916-28. doi:https://doi.org/10.1002/jcp.24922
  • Pierres M, Naquet P, Barbet J, Marchetto S, Marics I, Devaux C, Barad M, Hyman R, Rougon G. Evidence that murine hematopoietic cell subset marker J11d is attached to a glycosyl-phosphatidylinositol membrane anchor. Eur J Immunol. 1987;17(12):1781-5. doi:https://doi.org/10.1002/eji.1830171216
  • Kristiansen G, Winzer KJ, Mayordomo E, Bellach J, Schlüns K, Denkert C, Dahl E, Pilarsky C, Altevogt P, Guski H, et al. CD24 expression is a new prognostic marker in breast cancer. Clin Cancer Res. 2003;9(13):4906-13.
  • Lee HJ, Choe G, Jheon S, Sung SW, Lee CT, Chung JH. CD24, a novel cancer biomarker, predicting disease-free survival of non-small cell lung carcinomas: a retrospective study of prognostic factor analysis from the viewpoint of forthcoming (seventh) new TNM classification. J Thorac Oncol. 2010;5(5):649-57. doi:https://doi.org/10.1097/JTO.0b013e3181d5e554
  • Yeung TM, Gandhi SC, Wilding JL, Muschel R, Bodmer WF. Cancer stem cells from colorectal cancer-derived cell lines. Proc Natl Acad Sci USA. 2010;107(8):3722-7. doi:https://doi.org/10.1073/pnas.0915135107
  • Chakrabarty S. Regulation of human colon-carcinoma cell adhesion to extracellular matrix by transforming growth factor beta 1. Int J Cancer. 1992;50(6):968-73. doi:https://doi.org/10.1002/ijc.2910500624
  • Choi SR, Cho M, Kim HR, Ahn DH, Sleisenger MH, Kim YS. Biological properties and expression of mucins in 5-fluorouracil resistant HT29 human colon cancer cells. Int J Oncol. 2000;17(1):141-7. doi:https://doi.org/10.3892/ijo.17.1.141
  • Demers M-J, Thibodeau S, Noël D, Fujita N, Tsuruo T, Gauthier R, Arguin M, Vachon PH. Intestinal epithelial cancer cell anoikis resistance: EGFR-mediated ­sustained activation of Src overrides Fak-dependent signaling to MEK/Erk and/or PI3-K/Akt-1. J Cell Biochem. 2009;107(4):639-54. doi:https://doi.org/10.1002/jcb.22131
  • Ke J, Wu X, Wu X, He X, Lian L, Zou Y, He X, Wang H, Luo Y, Wang L, et al. Subpopulation of CD24+ cells in colon cancer cell lines possess stem cell characteristics. Neoplasma. 2012;59(03):282-8. doi:https://doi.org/10.4149/neo_2012_036
  • Suzergoz F, Gürol AO, Erdem S. Büyüme faktörlerinin kordon kanı kök hücre içeriği üzerine etkisinin hücrelerde Rodamin123 birikimi ile belirlenmesi. Harran Üniversitesi Tıp Fakültesi Dergisi. 2007;4(2):45-9.
  • Lu J, Cui Y, Zhu J, He J, Zhou G, Yue Z. Biological characteristics of Rh123high stem‑like cells in a side population of 786‑O renal carcinoma cells. Oncol Lett. 2013;5(6):1903-8. doi:https://doi.org/10.3892/ol.2013.1270
  • Lin J, Feng J, Yang H, Yan Z, Li Q, Wei L, Lai Z, Jin Y, Peng J. Scutellaria barbata D. Don inhibits 5-fluorouracil resistance in colorectal cancer by regulating PI3K/AKT pathway. Oncol Rep. 2017;38(4):2293-300. doi:https://doi.org/10.3892/or.2017.5892
  • Lu Y, Shan S, Li H, Shi J, Zhang X, Li Z. Reversal effects of bound polyphenol from foxtail millet bran on multidrug resistance in human HCT-8/Fu colorectal cancer cell. J Agric Food Chem. 2018;66(20):5190-9. doi:https://doi.org/10.1021/acs.jafc.8b01659
  • Pallis M, Russell N. A drug efflux independant role for P-glycoprotein in augmenting the apoptosis induced by growth factor withdrawal in acute myeloid leukemia. Br J Haematol. 1999;105:77-83.
  • Çetin G, Tıraş B. İlaç Davranışında P-glikoprotein’in Rolü. Turkiye Klinikleri J Vet Sci. 2011;2(3):196-204.
  • Yamada T, Takaoka AS, Naishiro Y, Hayashi R, Maruyama K, Maesawa C, Ochiai A, Hirohashi S. Transactivation of the multidrug resistance 1 gene by T-cell factor 4/beta-catenin complex in early colorectal carcinogenesis. Cancer Res. 2000;60:4761-6.
  • Potocnik U, Ravnik GM, Golouh R, Glavac D. Naturally occurring mutations and functional polymorphisms in multidrug resistance 1 gene: correlation with microsatellite instability and lymphoid infiltration in colorectal cancers. J Med Genet. 2002;39(5):340-6. doi:https://doi.org/10.1136/jmg.39.5.340
  • Fojo AT, Ueda K, Slamon DJ, Poplack DG, Gottesman MM, Pastan I. Expression of a multidrug-resistance gene in human tumors and tissues. Proc Natl Acad Sci USA. 1987;84(1):265-9. doi:https://doi.org/10.1073/pnas.84.1.265
  • Meschini S, Calcabrini A, Monti E, Del Bufalo D, Stringaro A, Dolfini E, Arancia G. Intracellular P‐glycoprotein expression is associated with the intrinsic multidrug resistance phenotype in human colon adenocarcinoma cells. Int J Cancer. 2000;87(5):615-28. doi:https://doi.org/10.1002/1097-0215(20000901)87:5<615::AID-IJC1>3.0.CO;2-4
  • Li Q, Wang X, Shen A, Zhang Y, Chen Y, Sferra TJ, Lin J, Peng JUN. Hedyotis diffusa Willd overcomes 5-fluorouracil resistance in human colorectal cancer HCT-8/5-FU cells by downregulating the expression of P-glycoprotein and ATP-binding casette subfamily G member 2. Exp Ther Med. 2015;10(5):1845-50.
  • PDF