Colorectal cancer is the third most common cancer worldwide. Cancer stem cells are known to play an important role in relapse, and metastases of the disease after chemotherapy. Investigation of new drugs, and their combinations targeting these cells and thus eliminating cancer is one of the most urgent needs of today’s chemotherapy. The aim of the present study was to evaluate the effects of Bryophytes like Abietinella abietina (AA), Homolothecium sericeum (HS), Tortella tortuosa (TT), Syntrichia ruralis (SR), and Bryoerythrophyllum rubrum (BR) species extracted with ethyl alcohol on 5-fluorouracil(5-FU) resistant colorectal cancer cell lines (HCT116 and HT29). After extraction, stock solutions of bryophytes were prepared, and IC50 values were detected in drug-resistant cells obtained with 5-FU application. CD24+, CD44+/CD133+ surface markers and P‐glycoprotein (P-gp) mediated efflux were isolated from both 5-FU treated cells and analyzed using the flow cytometry. In all bryophyte-treated groups, the binding Rho123low (low Rho fluorescence) and Rhohigh (high Rho fluorescence) were sorted from 5-FU resistant HCT116, and HT-29 cells. All types of bryophytes were found cytotoxic. Bryophyte extract reduced the percentage of Rholow cells in cultures incubated with 5-FU. In summary, the implementation of these bryophytes might be regarded as an effective approach for treatment of colorectal cancer due to their cytotoxic effect that decreases the recurrence of the disease.
Marley AR, Nan H. Epidemiology of colorectal cancer. Int J Mol Epidemiol Genet. 2016;7(3):105-14./li>
Balchen V, Simon K. Colorectal cancer development and advances in screening. CIA. 2016;11:967-76.
Sargent D, Sobrero A, Grothey A, O’Connell MJ, Buyse M, Andre T, Zheng Y, Green E, Labianca R, O’Callaghan C, et al. Evidence for cure by adjuvant therapy in colon cancer: observations based on individual patient data from 20,898 patients on 18 randomized trials. J Clin Oncol. 2009;27(6):872-7. doi:https://doi.org/10.1200/JCO.2008.19.5362
Renouf DJ, Woods R, Speers C, Hay J, Terry Phang P, Fitzgerald C, Kennecke H. Improvements in 5-year outcomes of stage II/III rectal cancer relative to colon cancer. Am J Clin Oncol. 2013;36(6):558-64. doi:https://doi.org/10.1097/COC.0b013e318256f5dc
Brown KM, Xue A, Mittal A, Samra JS, Smith R, Hugh TJ. Patient-derived xenograft models of colorectal cancer in pre-clinical research: a systematic review. Oncotarget. 2016;7(40):66212-25. doi:https://doi.org/10.18632/oncotarget.11184
Gao XM, Zhang R, Dong QZ, Qin LX. Properties and feasibility of using cancer stem cells in clinical cancer treatment. Cancer Biol Med. 2016;13(4):489-95.
Dean M, Fojo T, Bates S. Tumour stem cells and drug resistance. Nat Rev Cancer. 2005;5(4):275-84. doi:https://doi.org/10.1038/nrc1590
Yu F, Yao H, Zhu P, Zhang X, Pan Q, Gong C, Huang Y, Hu X, Su F, Lieberman J, et al. let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell. 2007;131(6):1109-23. doi:https://doi.org/10.1016/j.cell.2007.10.054
Levina V, Marrangoni AM, DeMarco R, Gorelik E, Lokshin AE. Drug-selected human lung cancer stem cells: cytokine network, tumorigenic and metastatic properties. PLoS One. 2008;3(8):e3077. doi:https://doi.org/10.1371/journal.pone.0003077
Jordan CT. Cancer stem cells: controversial or just misunderstood?Cell Stem Cell. 2009;4(3):203-5. doi:https://doi.org/10.1016/j.stem.2009.02.003
Chiodi I, Belgiovine C, Donà F, Scovassi AI, Mondello C. Drug treatment of cancer cell lines: a way to select for cancer stem cells. Cancers (Basel). 2011;3(1):1111-28. doi:https://doi.org/10.3390/cancers3011111
Balla MM, Ningthoujam RS, Kumar M, Bandekar JR, Pandey BN. Cellular and spectroscopic characterization of cancer stem cell-like cells derived from A549 lung carcinoma. J Cancer Res Ther. 2016;12(3):1144-52.
Chaffer CL, Weinberg RA. A perspective on cancer cell metastasis. Science. 2011;331(6024):1559-64. doi:https://doi.org/10.1126/science.1203543
Grillet F, Bayet E, Villeronce O, Zappia L, Lagerqvist EL, Lunke S, Charafe-Jauffret E, Pham K, Molck C, Rolland N, et al. Circulating tumour cells from patients with colorectal cancer have cancer stem cell hallmarks in ex vivo culture. Gut. 2017;66(10):1802-10. doi:https://doi.org/10.1136/gutjnl-2016-311447
Clevers H. The cancer stem cell: premises, promises and challenges. Nat Med. 2011;17(3):313-9. doi:https://doi.org/10.1038/nm.2304
Malik B, Nie D. Cancer stem cells and resistance to chemo and radio therapy. Front Biosci. 2012;E4(6):2142-9. doi:https://doi.org/10.2741/531
Sahlberg SH, Spiegelberg D, Glimelius B, Stenerlöw B, Nestor M. Evaluation of cancer stem cell markers CD133, CD44, CD24: association with AKT isoforms and radiation resistance in colon cancer cells. PLoS One. 2014;9(4):e94621. doi:https://doi.org/10.1371/journal.pone.0094621
Clardy J, Walsh C. Lessons from natural molecules. Nature. 2004;432(7019):829-37. doi:https://doi.org/10.1038/nature03194
D’Incalci M, Brunelli D, Marangon E, Simone M, Tavecchio M, Gescher A, Mantovani R. Modulation of gene transcription by natural products-a viable anticancer strategy. CPD. 2007;13(27):2744-50. doi:https://doi.org/10.2174/138161207781757097
Gu J, Gui Y, Chen L, Yuan G, Lu HZ, Xu X. Use of natural products as chemical library for drug discovery and network pharmacology. PLoS One. 2013;8(4):e62839. doi:https://doi.org/10.1371/journal.pone.0062839
Singh S, Srivastava K. It has been suggested that s as Green Brain: unique and indispensable small creature. Int J Pharm Sci Rev Res. 2013;23(2):28-35.
Zinsmeister HD, Becker H, Eicher T. Bryophytes, a source of biologically active, naturally occurring material?Angew Chem Int Ed Engl. 1991;30(2):130-47. doi:https://doi.org/10.1002/anie.199101301
Asakawa Y. Biologically active compounds from bryophytes. Pure Appl Chem. 2007;79(4):557-80. doi:https://doi.org/10.1351/pac200779040557
Asakawa Y, Ludwiczuk A, Nagashima F. Phytochemical and biological studies of bryophytes. Phytochemistry. 2013;91:52-80. doi:https://doi.org/10.1016/j.phytochem.2012.04.012
Dey A, Mukherjee A. Therapeutic potential of bryophytes and derived compounds against cancer. J Acute Dis. 2015;4(3):236-48. doi:https://doi.org/10.1016/j.joad.2015.04.011
Asakawa Y. Recent advances in phytochemistry of bryophytes-acetogenins, terpenoids and bis(bibenzyl)s from selected Japanese, Taiwanese, New Zealand, Argentinean and European liverworts. Phytochemistry. 2001;56(3):297-312. doi:https://doi.org/10.1016/S0031-9422(00)00454-4
Singh M, Govindarajan R, Nath V, Rawat AK, Mehrotra S. Antimicrobial, wound healing and antioxidant activity of Plagiochasma appendiculatum Lehm. et Lind. J Ethnopharmacol. 2006;107(1):67-72. doi:https://doi.org/10.1016/j.jep.2006.02.007
Shu YF, Wei HC, Wu CL. Sesquiterpenoids from liverworts Lepidozia vitrea and L. Fauriana. Phytochem. 1994;37(3):773-6. doi:https://doi.org/10.1016/S0031-9422(00)90356-X
Lu ZQ, Fan PH, Ji M, Lou HX. Terpenoids and bisbibenzyls from Chinese liverworts Conocephalum conicum and Dumortiera hirsuta. J Asian Nat Prod Res. 2006;8(1-2):187-92. doi:https://doi.org/10.1080/1028602042000325537
Wu C, Gunatilaka AA, McCabe FL, Johnson RK, Spjut RW, Kingston DG. Bioactive and other sesquiterpenes from Chiloscyphus rivularis. J Nat Prod. 1997;60(12):1281-6. doi:https://doi.org/10.1021/np970251u
Komala I, Ito T, Nagashima F, Yagi Y, Asakawa Y. Cytotoxic, radical scavenging and antimicrobial activities of sesquiterpenoids from the Tahitian liverwort Mastigophora diclados (Brid.) Nees (Mastigophoraceae). J Nat Med. 2010;64(4):417-22. doi:https://doi.org/10.1007/s11418-010-0423-8
Komala I, Ito T, Nagashima F, Yagi Y, Asakawa Y. Cytotoxic bibenzyls, and germacrane- and pinguisane-type sesquiterpenoids from Indonesian, Tahitian and Japanese liverworts. Nat Prod Commun. 2011;6(3):303-9.
Manoj GS, Kumar TR, Varghese S, Murugan K, Effect of methanolic and water extract of Leucobryum bowringii Mitt. on growth, migration and invasion of MCF 7 human breast cancer cells in vitro. Indian J Exp Biol. 2012;50:602-611.
Öztopcu-Vatan P, Kabadere S, Uyar R, Savaroglu F, Kus G. Time dependent cytotoxic role of Homalothecium sericeum extracts on glioma. Biol Divers Conserv. 2012;50(1):1-4.
Vollár M, Gyovai A, Szűcs P, Zupkó I, Marschall M, Csupor-Löffler B, Bérdi P, Vecsernyés A, Csorba A, Liktor-Busa E, et al. Antiproliferative and antimicrobial activities of selected bryophytes. Molecules. 2018;23(7):1520. doi:https://doi.org/10.3390/molecules23071520
Yayıntaş OT, Yılmaz S, Sökmen M. Determination of antioxidant, antimicrobial and antitumor activity of bryophytes from Mount Ida (Canakkale, Turkey). Indian J. 2019;18(2):395-401.
Onbasli D, Yuvali G. In vitro medicinal potentials of Bryum capillare, a moss sample, from Turkey. Saudi J. 2021;28(1):478-83. doi:https://doi.org/10.1016/j.sjbs.2020.10.031
Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414(6859):105-11. doi:https://doi.org/10.1038/35102167
Liu Y, Bodmer WF. Analysis of P53 mutations and their expression in 56 colorectal cancer cell lines. Proc Natl Acad Sci. 2006;103(4):976-81. doi:https://doi.org/10.1073/pnas.0510146103
Volchenboum SL, Li C, Li S, Attiyeh EF, Reynolds CP, Maris JM, Look AT, George RE. Comparison of primary neuroblastoma tumors and derivative early-passage cell lines using genome-wide single nucleotide polymorphism array analysis. Cancer Res. 2009;69(10):4143-94149. doi:https://doi.org/10.1158/0008-5472.CAN-08-3112
Douglas EJ, Fiegler H, Rowan A, Halford S, Bicknell DC, Bodmer W, Tomlinson IPM, Carter NP. Array comparative genomic hybridization analysis of colorectal cancer cell lines and primary carcinomas. Cancer Res. 2004;64(14):4817-25. doi:https://doi.org/10.1158/0008-5472.CAN-04-0328
Willson JK, Bittner GN, Oberley TD, Meisner LF, Weese JL. Cell culture of human colon adenomas and carcinomas. Cancer Res. 1987;47(10):2704-13.
Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997;3(7):730-7. doi:https://doi.org/10.1038/nm0797-730
Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C, De Maria R. Identification and expansion of human colon-cancer-initiating cells. Nature. 2007;445(7123):111-5. doi:https://doi.org/10.1038/nature05384
O’Brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature. 2007;445(7123):106-10. doi:https://doi.org/10.1038/nature05372
Fan F, Samuel S, Evans KW, Lu J, Xia L, Zhou Y, Sceusi E, Tozzi F, Ye X‐C, Mani SA, et al. Overexpression of Snail induces epithelial-mesenchymal transition and a cancer stem cell-like phenotype in human colorectal cancer cells. Cancer Med. 2012;1(1):5-16. doi:https://doi.org/10.1002/cam4.4
Zhang H, Li W, Nan F, Ren F, Wang H, Xu Y, Zhang F. MicroRNA expression profile of colon cancer stem-like cells in HT29 adenocarcinoma cell line. Biochem Biophys Res Commun. 2011;404(1):273-8. doi:https://doi.org/10.1016/j.bbrc.2010.11.106
Su YJ, Lai HM, Chang YW, Chen GY, Lee JL. Direct reprogramming of stem cell properties in colon cancer cells by CD44. Embo J. 2011;30(15):3186-99. doi:https://doi.org/10.1038/emboj.2011.211
Hiraga T, Ito S, Nakamura H. Cancer stem-like cell marker CD44 promotes bone metastases by enhancing tumorigenicity, cell motility, and hyaluronan production. Cancer Res. 2013;73(13):4112-22. doi:https://doi.org/10.1158/0008-5472.CAN-12-3801
Mahalingaiah PK, Ponnusamy L, Singh KP. Chronic oxidative stress leads to malignant transformation along with acquisition of stem cell characteristics, and epithelial to mesenchymal transition in human renal epithelial cells. J Cell Physiol. 2015;230(8):1916-28. doi:https://doi.org/10.1002/jcp.24922
Pierres M, Naquet P, Barbet J, Marchetto S, Marics I, Devaux C, Barad M, Hyman R, Rougon G. Evidence that murine hematopoietic cell subset marker J11d is attached to a glycosyl-phosphatidylinositol membrane anchor. Eur J Immunol. 1987;17(12):1781-5. doi:https://doi.org/10.1002/eji.1830171216
Kristiansen G, Winzer KJ, Mayordomo E, Bellach J, Schlüns K, Denkert C, Dahl E, Pilarsky C, Altevogt P, Guski H, et al. CD24 expression is a new prognostic marker in breast cancer. Clin Cancer Res. 2003;9(13):4906-13.
Lee HJ, Choe G, Jheon S, Sung SW, Lee CT, Chung JH. CD24, a novel cancer biomarker, predicting disease-free survival of non-small cell lung carcinomas: a retrospective study of prognostic factor analysis from the viewpoint of forthcoming (seventh) new TNM classification. J Thorac Oncol. 2010;5(5):649-57. doi:https://doi.org/10.1097/JTO.0b013e3181d5e554
Yeung TM, Gandhi SC, Wilding JL, Muschel R, Bodmer WF. Cancer stem cells from colorectal cancer-derived cell lines. Proc Natl Acad Sci USA. 2010;107(8):3722-7. doi:https://doi.org/10.1073/pnas.0915135107
Chakrabarty S. Regulation of human colon-carcinoma cell adhesion to extracellular matrix by transforming growth factor beta 1. Int J Cancer. 1992;50(6):968-73. doi:https://doi.org/10.1002/ijc.2910500624
Choi SR, Cho M, Kim HR, Ahn DH, Sleisenger MH, Kim YS. Biological properties and expression of mucins in 5-fluorouracil resistant HT29 human colon cancer cells. Int J Oncol. 2000;17(1):141-7. doi:https://doi.org/10.3892/ijo.17.1.141
Demers M-J, Thibodeau S, Noël D, Fujita N, Tsuruo T, Gauthier R, Arguin M, Vachon PH. Intestinal epithelial cancer cell anoikis resistance: EGFR-mediated sustained activation of Src overrides Fak-dependent signaling to MEK/Erk and/or PI3-K/Akt-1. J Cell Biochem. 2009;107(4):639-54. doi:https://doi.org/10.1002/jcb.22131
Ke J, Wu X, Wu X, He X, Lian L, Zou Y, He X, Wang H, Luo Y, Wang L, et al. Subpopulation of CD24+ cells in colon cancer cell lines possess stem cell characteristics. Neoplasma. 2012;59(03):282-8. doi:https://doi.org/10.4149/neo_2012_036
Suzergoz F, Gürol AO, Erdem S. Büyüme faktörlerinin kordon kanı kök hücre içeriği üzerine etkisinin hücrelerde Rodamin123 birikimi ile belirlenmesi. Harran Üniversitesi Tıp Fakültesi Dergisi. 2007;4(2):45-9.
Lu J, Cui Y, Zhu J, He J, Zhou G, Yue Z. Biological characteristics of Rh123high stem‑like cells in a side population of 786‑O renal carcinoma cells. Oncol Lett. 2013;5(6):1903-8. doi:https://doi.org/10.3892/ol.2013.1270
Lin J, Feng J, Yang H, Yan Z, Li Q, Wei L, Lai Z, Jin Y, Peng J. Scutellaria barbata D. Don inhibits 5-fluorouracil resistance in colorectal cancer by regulating PI3K/AKT pathway. Oncol Rep. 2017;38(4):2293-300. doi:https://doi.org/10.3892/or.2017.5892
Lu Y, Shan S, Li H, Shi J, Zhang X, Li Z. Reversal effects of bound polyphenol from foxtail millet bran on multidrug resistance in human HCT-8/Fu colorectal cancer cell. J Agric Food Chem. 2018;66(20):5190-9. doi:https://doi.org/10.1021/acs.jafc.8b01659
Pallis M, Russell N. A drug efflux independant role for P-glycoprotein in augmenting the apoptosis induced by growth factor withdrawal in acute myeloid leukemia. Br J Haematol. 1999;105:77-83.
Çetin G, Tıraş B. İlaç Davranışında P-glikoprotein’in Rolü. Turkiye Klinikleri J Vet Sci. 2011;2(3):196-204.
Yamada T, Takaoka AS, Naishiro Y, Hayashi R, Maruyama K, Maesawa C, Ochiai A, Hirohashi S. Transactivation of the multidrug resistance 1 gene by T-cell factor 4/beta-catenin complex in early colorectal carcinogenesis. Cancer Res. 2000;60:4761-6.
Potocnik U, Ravnik GM, Golouh R, Glavac D. Naturally occurring mutations and functional polymorphisms in multidrug resistance 1 gene: correlation with microsatellite instability and lymphoid infiltration in colorectal cancers. J Med Genet. 2002;39(5):340-6. doi:https://doi.org/10.1136/jmg.39.5.340
Fojo AT, Ueda K, Slamon DJ, Poplack DG, Gottesman MM, Pastan I. Expression of a multidrug-resistance gene in human tumors and tissues. Proc Natl Acad Sci USA. 1987;84(1):265-9. doi:https://doi.org/10.1073/pnas.84.1.265
Meschini S, Calcabrini A, Monti E, Del Bufalo D, Stringaro A, Dolfini E, Arancia G. Intracellular P‐glycoprotein expression is associated with the intrinsic multidrug resistance phenotype in human colon adenocarcinoma cells. Int J Cancer. 2000;87(5):615-28. doi:https://doi.org/10.1002/1097-0215(20000901)87:5<615::AID-IJC1>3.0.CO;2-4
Li Q, Wang X, Shen A, Zhang Y, Chen Y, Sferra TJ, Lin J, Peng JUN. Hedyotis diffusa Willd overcomes 5-fluorouracil resistance in human colorectal cancer HCT-8/5-FU cells by downregulating the expression of P-glycoprotein and ATP-binding casette subfamily G member 2. Exp Ther Med. 2015;10(5):1845-50.