Observing the presence of efflux pump activities in some clinically isolated bacterial strains

Eda Altinoz1*, Ergin Murat Altuner1

1Kastamonu University, Faculty of Science and Arts, Department of Biology, Kastamonu, Turkey
* Corresponding author: altinozedaa@gmail.com

Chemotherapeutic agents are substances that cure infectious diseases for many years. However, problems arose due to drug resistance that developed over time and it was observed that the drugs failed to kill the bacteria. Studies have been carried out to find the factor caused by drug resistance that adversely affect the disease treatment, and these studies continue today. There are different types of resistance mechanisms. Efflux pumps are just one of these mechanisms. Efflux pumps cannot enter and release the drug into the cell. Thus, the microorganism becomes resistant to the drug used. If this resistance is inhibited, the drug may work. A variety of chemical or natural inhibitors are available for inhibition. However, since they cause toxicity problems, their clinical use is not currently available. Studies in this area are ongoing. There are studies to determine the activity of the efflux pump. The activity of this mechanism can be detected with ethidium bromide (EtBr). In this study, it was aimed to determine the efflux pump activity of some resistant clinically isolated strains using EtBr dye. The strains that are Acinetobacter baumannii, Candida albicans, Candida glabrata, Candida tropicalis, Klebsiella pneumoniae, Providencia rustigianii, Serratia odorifera, Shigella flexneri, Staphylococcus aureus and Streptococcus pneumoniae microorganisms. Cartwheel method was applied on agars containing TSB with EtBr with different concentrations (0.0 mg/L, 0.5 mg/L, 1.0 mg/L, 1.5 mg/L, 2.0 mg/L and 2.5 mg/L). After the incubation, activation case was observed under UV light. It is concluded that each strain used has efflux pump activity. EtBr was released at 0.5 mg/L and did not fluoresce. Different fluorescence were observed under EtBr UV between 1.0 mg/L and 2.5 mg /L.
Keywords: Drug resistance, efflux pump activities, clinically isolated bacterial strains, EtBr, inhibitors, UV

How to cite: Altinoz, E., Altuner, E.M. (2022). Observing the Presence of Efflux Pump Activities in Some Clinically Isolated Bacterial Strains. International Journal of Biology and Chemistry, 15(1), 48-54.

References
  • 1. Gan, L., Chen, S., & Jensen, G. (2008). Molecular organization of Gram-negative peptidoglycan. Proceedings of the National Academy of Sciences,105(48), 18953–18957. http://dx.doi.org/10.1021/jo035397e.s001
  • 2. Vollmer, W., Blanot, D., & De Pedro, M. A. (2008). Peptidoglycan structure and architecture. FEMS microbiology reviews, 32(2), 149-167. http://dx.doi.org/10.1111/j.1574-6976.2007.00094.x
  • 3. Altınöz, E., & Altuner, E. M. (2019). Antibiotic Resistance and Efflux Pumps. International Journal of Innovative Research and Reviews, 3(2), 1-9.
  • 4. Webber, M. A., & Piddock, L. J. V. (2003). The importance of efflux pumps in bacterial antibiotic resistance. Journal of Antimicrobial Chemotherapy, 51(1), 9-11. http://dx.doi.org/10.1093/jac/dkg050
  • 5. Alcalde-Rico, M., Hernando-Amado, S., Blanco, P., & Martínez, J. L. (2016). Multidrug efflux pumps at the crossroad between antibiotic resistance and bacterial virulence. Frontiers in microbiology,7, 1483. http://dx.doi.org/10.3389/fmicb.2016.01483
  • 6. McMurry, L., & Levy, S. B. (1978). Two transport systems for tetracycline in sensitive Escherichia coli: critical role for an initial rapid uptake system insensitive to energy inhibitors. Antimicrobial agents and chemotherapy, 14(2), 201-209. http://dx.doi.org/10.1128/aac.14.2.201
  • 7. McMurry, L., Petrucci, R. E., & Levy, S. B. (1980). Active efflux of tetracycline encoded by four genetically different tetracycline resistance determinants in Escherichia coli. Proceedings of the national academy of sciences, 77(7), 3974-3977. http://dx.doi.org/10.1073/pnas.77.7.3974
  • 8. Nelson, M. L., & Levy, S. B. (2011). The history of the tetracyclines. Annals of the New York Academy of Sciences, 1241(1), 17-32. http://dx.doi.org/10.1111/j.1749-6632.2011.06354.x
  • 9. Kumar, S., & Varela, M. F. (2013). Molecular mechanisms of bacterial resistance to antimicrobial agents. In A. Méndez-Vilas (Ed.), Microbial Pathogens and Strategies for Combating Them: Science, Technology and Education (pp. 522-534). Badajoz:Formatex Research Center.
  • 10. Lomovskaya, O., Warren, M. S., Lee, A., Galazzo, J., Fronko, R., Lee, M. A. Y., ... & Leger, R. (2001). Identification and characterization of inhibitors of multidrug resistance efflux pumps in Pseudomonas aeruginosa: novel agents for combination therapy. Antimicrobial agents and chemotherapy, 45(1), 105-116. http://dx.doi.org/10.1128/AAC.45.1.105-116.2001
  • 11. Altınöz, E., & Altuner, E. M. (2020). Responses of some Escherichia coli clinical isolate strains with multiple drug resistance and overexpressed efux pumps against efflux pump inhibitors. International Journal of Biology and Chemistry, 13(1), 77-87. http://dx.doi.org/10.26577/ijbch.2020.v13.i1.08
  • 12. Du, D., Wang-Kan, X., Neuberger, A., van Veen, H. W., Pos, K. M., Piddock, L. J., & Luisi, B. F. (2018). Multidrug efflux pumps: structure, function and regulation. Nature reviews microbiology, 16(9), 523-539. http://dx.doi.org/10.1038/s41579-018-0048-6
  • 13. Song, L., & Wu, X. (2016). Development of efflux pump inhibitors in antituberculosis therapy. International journal of antimicrobial agents, 47(6), 421-429. http://dx.doi.org/10.1016/j.ijantimicag.2016.04.007
  • 14. Jack, D. L., Yang, N. M., & Saier, M. H. (2001). The drug/metabolite transporter superfamily. European Journal of Biochemistry, 268(13), 3620-3639. http://dx.doi.org/10.1046/j.1432-1327.2001.02265.x
  • 15. Tsuchiya, H., Doki, S., Takemoto, M., Ikuta, T., Higuchi, T., Fukui, K., ... & Nishizawa, T. (2016). Structural basis for amino acid export by DMT superfamily transporter YddG. Nature, 534(7607), 417-420. http://dx.doi.org/10.1038/nature17991
  • 16. Abdi, S. N., Ghotaslou, R., Ganbarov, K., Mobed, A., Tanomand, A., Yousefi, M., ... & Kafil, H. S. (2020). Acinetobacter baumannii Efflux Pumps and Antibiotic Resistance. Infection and drug resistance, 13, 423-434. http://dx.doi.org/10.2147/idr.s228089
  • 17. Kumar, R., & Pooja Patial, S. J. (2016). A review on efflux pump inhibitors of gram-positive and gram-negative bacteria from plant sources. International Journal of Current Microbiology and Applied Sciences, 5(6), 834-855. http://dx.doi.org/10.20546/ijcmas.2016.506.092
  • 18. Van Bambeke, F., & Lee, V. J. (2006). Inhibitors of bacterial efflux pumps as adjuvants in antibiotic treatments and diagnostic tools for detection of resistance by efflux. Recent patents on anti-infective drug discovery, 1(2), 157-175. http://dx.doi.org/10.2174/157489106777452692
  • 19. Gupta, A. K., Chauhan, D. S., Srivastava, K., Das, R., Batra, S., Mittal, M., ... & Hasnain, S. E. (2006). Estimation of efflux mediated multi-drug resistance and its correlation with expression levels of two major efflux pumps in mycobacteria. Journal of Communicable Diseases, 38(3), 246-254.
  • 20. Kristiansen, M. M., Leandro, C., Ordway, D., Martins, M., Viveiros, M., Pacheco, T., ... & Amaral, L. (2006). Thioridazine reduces resistance of methicillin-resistant Staphylococcus aureus by inhibiting a reserpine-sensitive efflux pump. in vivo, 20(3), 361-366.
  • 21. Seeger, M. A., Diederichs, K., Eicher, T., Brandstatter, L., Schiefner, A., Verrey, F., & Pos, K. M. (2008). The AcrB efflux pump: conformational cycling and peristalsis lead to multidrug resistance. Current drug targets, 9(9), 729-749. http://dx.doi.org/10.2174/138945008785747789
  • 22. Li, X. Z., & Nikaido, H. (2009). Efflux-mediated drug resistance in bacteria. Drugs, 69(12), 1555-1623. http://dx.doi.org/10.2165/11317030-000000000-00000
  • 23. Vecchione, J. J., Alexander, B., & Sello, J. K. (2009). Two distinct major facilitator superfamily drug efflux pumps mediate chloramphenicol resistance in Streptomyces coelicolor. Antimicrobial agents and chemotherapy, 53(11), 4673-4677. http://dx.doi.org/10.1128/AAC.00853-09
  • 24. Gupta, A. K., Reddy, V. P., Lavania, M., Chauhan, D. S., Venkatesan, K., Sharma, V. D., ... & Katoch, V. M. (2010). jefA (Rv2459), a drug efflux gene in Mycobacterium tuberculosis confers resistance to isoniazid & ethambutol. Indian J Med Res, 132(2), 176-188.
  • 25. Okandeji, B. O., Greenwald, D. M., Wroten, J., & Sello, J. K. (2011). Synthesis and evaluation of inhibitors of bacterial drug efflux pumps of the major facilitator superfamily. Bioorganic & medicinal chemistry, 19(24), 7679-7689. http://dx.doi.org/10.1016/j.bmc.2011.10.011
  • 26. Tegos, P. G., Haynes, M., Strouse, J. J., Khan, Md. T. M., Bologa, G. C., Oprea, I. T & Sklar, A. L. (2011). Microbial efflux pump inhibition: tactics and strategies. Current pharmaceutical design, 17(13), 1291-1302. http://dx.doi.org/10.2174/138161211795703726
  • 27. Rodrigues, L., Machado, D., Couto, I., Amaral, L., & Viveiros, M. (2012). Contribution of efflux activity to isoniazid resistance in the Mycobacterium tuberculosis complex. Infection, Genetics and Evolution, 12(4), 695-700. http://dx.doi.org/10.1016/j.meegid.2011.08.009
  • 28. Rodrigues, L., Villellas, C., Bailo, R., Viveiros, M., & Aínsa, J. A. (2013). Role of the Mmr efflux pump in drug resistance in Mycobacterium tuberculosis. Antimicrobial agents and chemotherapy, 57(2), 751-757. http://dx.doi.org/10.1128/AAC.01482-12
  • 29. Adams, K. N., Szumowski, J. D., & Ramakrishnan, L. (2014). Verapamil, and its metabolite norverapamil, inhibit macrophage-induced, bacterial efflux pump-mediated tolerance to multiple anti-tubercular drugs. The Journal of infectious diseases, 210(3), 456-466. http://dx.doi.org/10.1093/infdis/jiu095
  • 30. Spengler, G., Csonka, Á., Molnár, J., & Amaral, L. (2016). The anticancer activity of the old neuroleptic phenothiazine-type drug thioridazine. Anticancer research, 36(11), 5701-5706. http://dx.doi.org/10.21873/anticanres.11153
  • 31. Singh, G., & Srivastava, A. K. (2017). Efflux Pump Inhibitors: Enhance Therapy And Cauterize Tuberculosis. International Journal Of Pharmaceutical Sciences And Research, 8(7), 2762-2767. http://dx.doi.org/10.13040/IJPSR.0975-8232.8(7).2762-67
  • 32. Lowrence, R. C., Subramaniapillai, S. G., Ulaganathan, V., & Nagarajan, S. (2019). Tackling drug resistance with efflux pump inhibitors: from bacteria to cancerous cells. Critical reviews in microbiology, 45(3), 334-353. http://dx.doi.org/10.1080/1040841X.2019.1607248
  • 33. Sharma, A., Gupta, V. K., & Pathania, R. (2019). Efflux pump inhibitors for bacterial pathogens: From bench to bedside. The Indian Journal of Medical Research, 149(2), 129-145. http://dx.doi.org/10.4103/ijmr.IJMR_2079_17
  • 34. Martins, M., Couto, I., Viveiros, M., & Amaral, L. (2010). Identification of efflux-mediated multi-drug resistance in bacterial clinical isolates by two simple methods. In S. H. Gillespie & T. D. McHugh (Eds.), Antibiotic resistance protocols (pp. 143-157). New York:Humana Press. http://dx.doi.org/10.1007/978-1-60327-279-7_11
  • 35. Core R Team. (2016). R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/ Erişim tarihi: 15/10/2020.
  • 36. Anbazhagan, P. V., Thavitiki, P. R., Varra, M., Annamalai, L., Putturu, R., Lakkineni, V. R., & Pesingi, P. K. (2019). Evaluation of efflux pump activity of multidrug-resistant Salmonella typhimurium isolated from poultry wet markets in India. Infection and drug resistance, 12, http://dx.doi.org/1081.10.2147/IDR.S185081
  • 37. Jiang, X., Yu, T., Xu, P., Xu, X., Ji, S., Gao, W., & Shi, L. (2018). Role of efflux pumps in the in vitro development of ciprofloxacin resistance in Listeria monocytogenes. Frontiers in microbiology, 9, 2350. http://dx.doi.org/10.3389/fmicb.2018.02350
  • PDF