Biochemical, Antioxidant Properties and Antimicrobial Activity of Epiphytic Leafy Liverwort Frullania dilatata (L.) Dumort

Ozcan Simsek1, Kerem Canlı2,3*, Atakan Benek4, Dilay Turu5, Ergin Murat Altuner6

1Çanakkale Onsekiz Mart University, Department of Forestry, Yenice Vocational School, Çanakkale, Türkiye
2Dokuz Eylül University, Faculty of Science, Department of Biology, Izmir, Türkiye
3Dokuz Eylül University, Fauna and Flora Research and Application Center, Izmir, Türkiye
4Kastamonu University, Graduate School of Natural and Applied Sciences, Department of Biology, Kastamonu, Türkiye
5Dokuz Eylül University, Graduate School of Natural and Applied Sciences, Department of Biology, Izmir, Türkiye
6Kastamonu University, Faculty of Science, Department of Biology, Kastamonu, Türkiye
* Corresponding author: kerem.canli@deu.edu.tr

In this study, the biochemical, antioxidant properties, and antimicrobial activity of the epiphytic leafy liverwort Frullania dilatata (L.) Dumort were investigated. Due to the scarcity and difficulty in obtaining liverworts, research on their bioactivity is limited; thus, this study aimed to uncover the potential of F. dilatata. The antimicrobial activity was evaluated against various microorganisms, including food isolates, clinical isolates, multidrug-resistant strains, and standard strains, using the disk diffusion method and determining the minimum inhibitory concentration (MIC) values. This study represents the first antioxidant investigation on F. dilatata and an antimicrobial study using ethanol extract and the disk diffusion method. Notably, susceptibility was observed in Enterococcus faecalis ATCC 29212, Enterococcus faecium FI, Listeria monocytogenes ATCC 7644, Providencia rustigianii MDR, and Staphylococcus aureus ATCC 25923. The antioxidant capacity was assessed using the DPPH method, emphasizing the high scavenging performance. Gas chromatography-mass spectrometry (GC-MS) analysis identified the primary compounds as frullanolide (19.08%), 2,3-Dimethylanisole (15.21%), linoleic acid (11.11%), palmitic acid (9.83%), and valerenic acid (5.3%). The results demonstrated the significant antimicrobial activity of F. dilatata against the tested microorganisms and its potent antioxidant properties. These findings emphasize the potential of F. dilatata as a promising source of natural antimicrobial and antioxidant agents, underscoring the importance of further investigation into its bioactive compounds and elucidating the mechanisms of action in future studies.
Keywords: Antimicrobial activity; antioxidant properties; bioactive compounds; Frullania dilatata; liverworts

How to cite: Simsek O, Canli K, Benek A, Turu D, Altuner EM. (2023). Biochemical, Antioxidant Properties and Antimicrobial Activity of Epiphytic Leafy Liverwort Frullania dilatata (L.) Dumort. Plants. 12(9):1877.

References
  • 1. Christenhusz, M.J.M.; Byng, J.W. The number of known plants species in the world and its annual increase. Phytotaxa 2016, 261, 201–217.
  • 2. Asakawa, Y. Biologically active compounds from bryophytes. Pure Appl. Chem. 2001, 73, 507–515.
  • 3. Glime, J.M. Chapter 10: Temperature: Effects. In Bryophyte Ecology; Michigan Technological University: Houghton, MI, USA; International Association of Bryologists: Seattle, WA, USA, 2017; Volume 1, Available online: http://digitalcommons.mtu.edu/bryophyte-ecology/ (accessed on 28 July 2022).
  • 4. Asakawa, Y.; Ludwiczuk, A. Chemical constituents of bryophytes: Structures and biological activity. J. Nat. Prod. 2017, 81, 641–660.
  • 5. Asakawa, Y. Liverworts-Potential Source of Medicinal Compounds. Med. Aromat. Plants 2012, 1.
  • 6. Asakawa, Y.; Ludwiczuk, A.; Novakovic, M.; Bukvicki, D.; Yongabi Anchang, K. Bis-bibenzyls, Bibenzyls, and Terpenoids in the Marchantiophyta (Liverworts): Structures, Synthesis, and Bioactivity. J. Nat. Prod. 2022, 85, 729–762.
  • 7. Wang, Q.; Dai, P.; Bao, L.; Guo, H.; Zhang, G.; Zhao, J. Neuroprotective Bibenzyls from the stems of Dendrobium ellipsophyllum. J. Nat. Prod. 2016, 79, 1969–1977.
  • 8. Forrest, L.L.; Villarreal, J.C. The role of bryophyte oil bodies in the early evolution of liverworts: Evidence from the Marchantiales. Flora. 2014, 209, 671–678.
  • 9. Tyagi, A.K.; Bukvicki, D.; Gottardi, D.; Veljic, M.; Guerzoni, M.E.; Malik, A.; Marin, P.D. Antimicrobial Potential and Chemical Characterization of Serbian Liverwort (Porella arboris-vitae): SEM and TEM Observations. Evid. Based Complement. Alternat. Med. 2013, 2013, 382927.
  • 10. Purkon, D.B.; Fadhlillah, F.M.; Maigoda, T.C.; Iwo, M.I.; Soemardji, A.A.; Nadhifah, A.; Sudaryat, Y. Phytochemical use in Ethnomedicine and Therapeutic Activities of Marchanita Genus. J. Vocat. Health Stud. 2022, 5, 174–185.
  • 11. Stelmasiewicz, M.; Świątek, Ł.; Ludwiczuk, A. Phytochemical profile and anticancer potential of endophytic microorganisms from liverwort species, Marchantia polymorpha L. Molecules 2021, 27, 153.
  • 12. Munteanu, I.G.; Apetrei, C. Analytical methods used in determining antioxidant activity: A review. Int. J. Mol. Sci. 2021, 22, 3380.
  • 13. Manandhar, S.; Luitel, S.; Dahal, R.K. In vitro antimicrobial activity of some medicinal plants against human pathogenic bacteria. J. Trop. Med. 2019, 2019, 1895340.
  • 14. Bhatia, R.; Narain, J.P. The growing challenge of antimicrobial resistance in the South-East Asia Region-Are we losing the battle? Indian J. Med. Res. 2010, 132, 482.
  • 15. Tunca-Pinarli, Y.; Benek, A.; Turu, D.; Bozyel, M.E.; Canli, K.; Altuner, E.M. Biological Activities and Biochemical Composition of Endemic Achillea fraasii. Microorganisms 2023, 11, 978.
  • 16. World Health Organization (WHO). The World Health Report 2002: Reducing Risks, Promoting Healthy Life; World Health Organization: Geneva, Switzerland, 2002.
  • 17. Ludwiczuk, A.; Asakawa, Y. Chemical Diversity of Liverworts From Frullania Genus. Nat. Prod. Commun. 2021, 16, 1934578X21995381.
  • 18. Greiff, G. Studying bryophilous fungi on Frullania dilatata. Field Bryol. 2021, 126, 35–40.
  • 19. Nikolajeva, V.; Liepina, L.; Petrina, Z.; Krumina, G.; Grube, M.; Muiznieks, I. Antibacterial activity of extracts from some bryophytes. Adv. Microbiol. 2012, 2, 345.
  • 20. Chen, J.; Duan, W.; Bai, R.; Yao, H.; Shang, J.; Xu, J. Design, synthesis and antioxidant activity evaluation of novel β-elemene derivatives. Bioorg. Med. Chem. Lett. 2014, 24, 3407–3411.
  • 21. Yao, Y.Q.; Ding, X.; Jia, Y.C.; Huang, C.X.; Wang, Y.Z.; Xu, Y.H. Anti-tumor effect of β-elemene in glioblastoma cells depends on p38 MAPK activation. Cancer Lett. 2008, 264, 127–134.
  • 22. Li, X.; Wang, G.; Zhao, J.; Ding, H.; Cunningham, C.; Chen, F.; Flynn, D.C.; Reed, E.; Li, Q.Q. Antiproliferative effect of β-elemene in chemoresistant ovarian carcinoma cells is mediated through arrest of the cell cycle at the G2-M phase. Cell. Mol. Life Sci. 2005, 62, 894–904.
  • 23. Mun, S.K.; Kang, K.Y.; Jang, H.Y.; Hwang, Y.H.; Hong, S.G.; Kim, S.J.; Kim, Y.M.; Yee, S.T. Atraric acid exhibits anti-inflammatory effect in lipopolysaccharide-stimulated RAW264.7 cells and mouse models. Int. J. Mol. Sci. 2020, 21, 7070.
  • 24. Chimplee, S.; Graidist, P.; Srisawat, T.; Sukrong, S.; Bissanum, R.; Kanokwiroon, K. Anti breast cancer potential of frullanolide from Grangea maderaspatana plant by inducing apoptosis. Oncol. Lett. 2019, 17, 5283–5291.
  • 25. Harada, H.; Yamashita, U.; Kurihara, H.; Fukushi, E.; Kawabata, J.; Kamei, Y. Antitumor activity of palmitic acid found as a selective cytotoxic substance in a marine red alga. Anticancer Res. 2002, 22, 2587–2590.
  • 26. Librán-Pérez, M.; Pereiro, P.; Figueras, A.; Novoa, B. Antiviral activity of palmitic acid via autophagic flux inhibition in zebrafish (Danio rerio). Fish Shellfish Immunol. 2019, 95, 595–605.
  • 27. Becker, A.; Felgentreff, F.; Schröder, H.; Meier, B.; Brattström, A. The anxiolytic effects of a Valerian extract is based on valerenic acid. BMC Complement. Altern. Med. 2014, 14, 267.
  • 28. Pejin, B.; Ciric, A.; Glamoclija, J.; Nikolic, M.; Sokovic, M. In vitro anti-quorum sensing activity of phytol. Nat. Prod. Res. 2015, 29, 374–377.
  • 29. Ghaneian, M.T.; Ehrampoush, M.H.; Jebali, A.; Hekmatimoghaddam, S.; Mahmoudi, M. Antimicrobial activity, toxicity and stability of phytol as a novel surface disinfectant. Environ. Health Eng. Manag. J. 2015, 2, 13–16.
  • 30. Fagali, N.; Catalá, A. Antioxidant activity of conjugated linoleic acid isomers, linoleic acid and its methyl ester determined by photoemission and DPPH techniques. Biophys. Chem. 2008, 137, 56–62.
  • 31. Taylor, T.A.; Unakal, C.G. Staphylococcus Aureus; StatPearls Publishing: Treasure Island, FL, USA, 2020.
  • 32. Chen, M.; Zhang, J.; Qi, J.; Dong, R.; Liu, H.; Wu, D.; Shao, H.; Jiang, X. Boronic Acid-Decorated Multivariate Photosensitive Metal–Organic Frameworks for Combating Multi-Drug-Resistant Bacteria. ACS Nano 2022, 16, 7732–7744.
  • 33. Stock, I.; Wiedemann, B. Natural antibiotic susceptibility of Providencia stuartii, P. rettgeri, P. alcalifaciens and P. rustigianii strains. J. Med. Microbiol. 1998, 47, 629–642.
  • 34. Lopez-Valladares, G.; Danielsson-Tham, M.L.; Tham, W. Implicated Food Products for Listeriosis and Changes in Serovars of Listeria monocytogenes Affecting Humans in Recent Decades. Foodborne Pathog. Dis. 2018, 15, 387–397.
  • 35. Duze, S.T.; Marimani, M.; Patel, M. Tolerance of Listeria monocytogenes to Biocides Used in Food Processing Environments. Food Microbiol. 2021, 97, 103758.
  • 36. World Health Organization. Report on the Burden of Endemic Health Care-Associated Infection Worldwide; World Health Organization: Geneva, Switzerland, 2011.
  • 37. O’Toole, R.F.; Leong, K.W.; Cumming, V.; van Hal, S.J. Vancomycin-Resistant Enterococcus faecium and the Emergence of New Sequence Types Associated with Hospital Infection. Res. Microbiol. 2023, 174, 104046.
  • 38. Asakawa, Y.; Ludwiczuk, A.; Nagashima, F. Phytochemical and Biological Studies of Bryophytes. Phytochemistry 2013, 91, 52–80.
  • 39. Andrews, J.M. BSAC Standardized Disc Susceptibility Testing Method (Version 6). J. Antimicrob. Chemother. 2003, 60, 20–41.
  • 40. Kowalska-Krochmal, B.; Dudek-Wicher, R. The Minimum Inhibitory Concentration of Antibiotics: Methods, Interpretation, Clinical Relevance. Pathogens 2021, 10, 165.
  • 41. Mensor, L.L.; Menezes, F.S.; Leitão, G.G.; Reis, A.S.; Santos, T.C.D.; Coube, C.S.; Leitão, S.G. Screening of Brazilian Plant Extracts for Antioxidant Activity by the Use of DPPH Free Radical Method. Phytother. Res. 2001, 15, 127–130.
  • 42. Tunç, K.; Semerci, A.B.; Okur, İ. Antioxidant Activity of the Fruits of Pyracantha coccinea Using Ethanolic Extract Method. Food Health 2020, 6, 35–40.
  • 43. Bharat, C.R.; Krishna, G.D. GC-MS Analysis of Young Leaves of Allophylus cobbe (L.) Raeusch. and Allophylus serratus (Roxb.) Kurz. Indian J. Pharm. Educ. Res. 2017, 51, 472–479.
  • PDF