New bis-1,3,4-thiadiazoles 1–7 were obtained by the reaction of fumaric acid and N-(alkyl/aryl/cyclic)thiosemicarbazides in the presence of phosphorous oxychloride. The structures of all compounds were elucidated by FT-IR, 1H NMR, and 13C NMR and elemental analysis. Antibacterial activity of the compounds was studied for eight selected bacteria. Compounds 2–7 exhibited effect on Klebsiella pneumoniae. However, none of the compounds effect on Pseudomonas aeruginosa, Staphylococcus epidermidis, Salmonella enterica serovar kentucky, Serratia marcescens. Self-consistent reaction force (SCRF) calculations were performed in DMSO medium to examine solvent energies using CPCM and SMD models. 6-31G(d) and 6-311++G(2d,2p) basis sets were used for DFT calculations. Besides electronic parameters such as electronegativity, electrophilicity and spectroscopic examinations of the compounds, QTAIM, local electron affinities, and Fukui analyses were also performed. Theoretical approaches supporting the experimental observations revealed that compounds containing aromatic and cyclic groups exhibit stronger antibacterial behavior than compounds containing aliphatic groups.
K. Gowda, H. A. Swarup, S. C. Nagarakere, S. Rangappa, R. S. Kanchugarkoppal, M. Kempegowda, Synth. Commun. 2020, 50, 1528–1544; DOI:10.1080/00397911.2020.1745843
H. Muğlu, N. Şener, H. A. M. Emsaed, S. Özkınalı, O. E. Özkan, M. Gür, J. Mol. Struct. 2018, 1174, 151–159; DOI:10.1016/j.molstruc.2018.03.116
H. Tahtaci, M. Er, T. Karakurt, K. Sancak, Tetrahedron 2017, 73, 4418–4425; DOI:10.1016/j.tet.2017.06.006
A. Al-Mulla, Der Pharma Chem. 2017, 9, 141–147;
M. A. Al-Omair, A. R. Sayed, M. M. Youssef, Molecules 2015, 20, 2591–2610; DOI:10.3390/molecules20022591
J. K. Gupta, R. K. Yadav, R. Dudhe, P. K. Sharma, Int. J. Pharmtech Res. 2010, 2, 1493–1507;
M. Hanif, M. Saleem, M. T. Hussain, N. H. Rama, S. Zaib, M. A. M. Aslam, P. G. Jones, J. Iqbal, J. Braz. Chem. Soc. 2012, 23, 854–860;
K. Shrivastava, S. Purohit, S. Singhal, Asian J. Biomed. Pharm. Sci 2013, 3, 6–23;
B. Ardan, Y. Slyvka, E. Goreshnik, M. Mys’kiv, Acta Chim. Slov. 2013, 60, 484–490.
Khan, S. Ali, S. Hameed, N. H. Rama, M. T. Hussain, A. Wadood, R. Uddin, Z. Ul-Haq, A. Khan, S. Ali, Eur. J. Med. Chem. 2010, 45, 5200–5207. DOI:10.1016/j.ejmech.2010.08.034
L. Yu, X. Gan, D. Zhou, F. He, S. Zeng, D. Hu, Molecules 2017, 22, 658.
W. S. Hamama, M. E. Ibrahim, H. A. Raoof, H. H. Zoorob, J. Heterocycl. Chem. 2017, 54, 2360–2366; DOI:10.1002/jhet.2826
H. Muğlu, H. Yakan, H. A. Shouaib, J. Mol. Struct. 2020, 1203, 127470; DOI:10.1016/j.molstruc.2019.127470
A. H. Moustafa, D. H. Ahmed, M. T. El-Wassimy, M. F. Mohamed, Synth. Commun. 2021, 51, 570–584; DOI:10.1080/00397911.2020.1843179
Y. Liu, G. Liang, D. Yin, Res. Chem. Intermed. 2015, 41, 2019–2024; DOI:10.1007/s11164-013-1328-4
A. Aly, R. El-Sayed, Chem. Pap. 2006, 60, 56–60. DOI:10.1016/S8756-5005(08)70230-0
S. Schenone, C. Brullo, O. Bruno, F. Bondavalli, A. Ranise, W. Filippelli, B. Rinaldi, A. Capuano, G. Falcone, Biorg. Med. Chem. 2006, 14, 1698–1705. DOI:10.1016/j.bmc.2005.10.064
N. Siddiqui, S. B. Andalip, R. Ali, O. Afzal, M. J. Akhtar, B. Azad, R. Kumar, J. Pharm. Bioallied Sci. 2011, 3, 194–212. DOI:10.4103/0975-7406.80765
F. Poorrajab, S. K. Ardestani, S. Emami, M. Behrouzi-Fardmoghadam, A. Shafiee, A. Foroumadi, Eur. J. Med. Chem. 2009, 44, 1758–1762. DOI:10.1016/j.ejmech.2008.03.039
J. J. Luszczki, M. Karpińska, J. Matysiak, A. Niewiadomy, Pharmacol. Rep. 2015, 67, 588–592. DOI:10.1016/j.pharep.2014.12.008
S. M. Gomha, Z. A. Muhammad, H. M. Gaber, M. M. Amin, J. Heterocycl. Chem. 2017, 54, 2708–2716. DOI:10.1002/jhet.2872
B. Kasetti Ashok, I. Singhvi, N. Ravindra, A. B. Shaik, Rev. Roum. Chim 2020, 65, 771–776. DOI:10.33224/rrch.2020.65.9.01
I. Singh, L. H. Al-Wahaibi, R. Srivastava, O. Prasad, S. K. Pathak, S. Kumar, S. Parveen, M. Banerjee, A. A. El-Emam, L. Sinha, ACS Omega 2020, 5, 30073–30087; DOI:10.1021/acsomega.0c04474
U. A. Çevik, D. Osmaniye, S. Levent, B. N. Sağlik, B. K. Çavuşoğlu, A. B. Karaduman, Y. Özkay, Z. A. Kaplancikli, Acta Pharm. 2020, 70, 499–513. DOI:10.2478/acph-2020-0034
M. M. Wassel, Y. A. Ammar, G. A. E. Ali, A. Belal, A. B. Mehany, A. Ragab, Bioorg. Chem. 2021, 110, 104794. DOI:10.1016/j.bioorg.2021.104794
F. Prestinaci, P. Pezzotti, A. Pantosti, Pathog. Glob. Health 2015, 109, 309–318. DOI:10.1179/2047773215Y.0000000030
P. Cos, A. J. Vlietinck, D. V. Berghe, L. Maes, J. Ethnopharmacol. 2006, 106, 290–302. DOI:10.1016/j.jep.2006.04.003
Canli K, Şimşek Ö, Yetgin A, Akata I, Altuner EM. (2017) Determination of the chemical composition and antimicrobial activity of Frankenia hirsute, Bangladesh Journal of Pharmacology, 12(4):463-469. DOI:10.3329/bjp.v12i4.33652
I. Wiegand, K. Hilpert, R. E. Hancock, Nat. Protoc. 2008, 3, 163–175; DOI:10.1038/nprot.2007.521
Baldas B, Altuner EM. (2018) The antimicrobial activity of apple cider vinegar and grape vinegar, which are used as a traditional surface disinfectant for fruits and vegetables, Commun. Fac. Sci. Univ. Ank. Series C, 27(1): 1-10.
A. Vollekova, D. Košťálová, R. Sochorova, Folia Microbiologica 2001, 46, 107–111; DOI:10.1007/BF02873586
H. Usman, A. Haruna, I. Akpulu, M. Ilyas, A. Ahmadu, Y. Musa, J. Trop. Biosci 2005, 5, 72–76.
Altuner EM, Çetin B. (2018) Antimicrobial activity of Isothecium alopecuroides and potential effect of some climate elements on the activity of this bryophyte sample. Kastamonu University, Journal of Forestry Faculty, 18(2): 126-137.. DOI:10.17475/kastorman.315779
P. Hohenberg, W. Kohn, Phys. Rev. 1964, 136, B864–B871; DOI:10.1103/PhysRev.136.B864
W. Kohn, L. J. Sham, Phys. Rev. 1965, 140, A1133–A1138; DOI:10.1103/PhysRev.140.A1133 (c) N. A. Sánchez-Bojorge, L. M. Rodríguez-Valdez, N. Flores-Holguín, J. Mol. Model. 2013, 19, 3537–3542. DOI:10.1007/s00894-013-1878-9
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision B.01, Gaussian, Inc., Wallingford CT, 2009.
R. F. Bader, Acc. Chem. Res. 1985, 18, 9–15; DOI:10.1021/ar00109a003
R. F. Bader, Chem. Rev. 1991, 91, 893–928; DOI:10.1021/cr00005a013
V. S. Duarte, G. D. D’Oliveira, J. M. Custodio, S. S. Oliveira, C. N. Perez, H. B. Napolitano, J. Mol. Model. 2019, 25, 1–14; DOI:10.1007/s00894-019-4082-8
A. S. Abo Dena, Z. A. Muhammad, W. M. Hassan, Chem. Pap. 2019, 73, 2803–2812. DOI:10.1007/s11696-019-00833-7
T. Lu, F. Chen, J. Comput. Chem. 2012, 33, 580–592. DOI:10.1002/jcc.22885
A. Ç. Karaburun, U. Acar Çevik, D. Osmaniye, B. N. Sağlık, B. Kaya Çavuşoğlu, S. Levent, Y. Özkay, A. S. Koparal, M. Behçet, Z. A. Kaplancıklı, Molecules 2018, 23, 3129; DOI:10.3390/molecules23123129
M. Gür, N. Şener, H. Muğlu, M. S. Çavuş, O. E. Özkan, F. Kandemirli, İ. Şener, J. Mol. Struct. 2017, 1139, 111–118; DOI:10.1016/j.molstruc.2017.03.019
Y.-T. Liu, L. Feng, D.-W. Yin, B.-J. Su, Res. Chem. Intermed. 2014, 40, 1607–1612. DOI:10.1007/s11164-013-1065-8
W. Kemp, Nuclear Magnetic Resonance Spectroscopy. In: Organic Spectroscopy, Palgrave, London, 1991, pp. 101–241. DOI:10.1007/978-1-349-15203-2_3
S. Ningaiah, U. K. Bhadraiah, A. Sobha, D. Shridevi, Polycycl. Aromat. Compd. 2020, 1–11;
N. Kerru, L. Gummidi, S. V. Bhaskaruni, S. N. Maddila, S. B. Jonnalagadda, Monatsh. Chem. 2020, 151, 981–990; DOI:10.1007/s00706-020-02625-2
H. Muğlu, M. Akın, M. S. Çavuş, H. Yakan, N. Şaki, E. Güzel, Comput. Biol. Chem. 2022, 96, 107618. DOI:10.1016/j.compbiolchem.2021.107618
H. Yakan, El-Cezeri Journal of Science and Engineering 2021, 8, 155–163.
T. R. Keepers, M. Gomez, C. Celeri, W. W. Nichols, K. M. Krause, Antimicrob. Agents Chemother. 2014, 58, 5297–5305. DOI:10.1128/AAC.02894-14
T. Rauckyte-Żak, B. Szejniuk, Ecol. Chem. Eng., A 2011, 18, 1691–1704. 30. M. H. Moshafi, A. Peymani, A. Foroumadi, M. R. Zabihi, F. Doostishoar, Intern. Med. Med. Investig. J. 2019, 4, 1–8. DOI:10.24200/imminv.v4i2.213