Observing the presence of efflux pump activity in some multidrug-resistant clinically isolated bacterial strains

Eda Altinoz1*, Ergin Murat Altuner1

1Kastamonu University, Faculty of Science, Department of Biology, Kastamonu, Türkiye
* Corresponding author: altinozedaa@gmail.com

Antibiotic resistance is one of the most common problems in antibacterial therapy. Several resistance mechanisms may lead to multidrug resistance (MDR), one of them is efflux pumps. Efflux pumps can be found in both prokaryotes and eukaryotes. With this mechanism, the entry of the drug into the cell is prevented or it is pumped out of the cell, thus the internal concentration of the drug is reduced and the drug cannot effect the cell. Due to this situation, which is frequently observed in microorganisms, antibiotic resistance occurs. If the efflux pump is inhibited, drugs may have a chance to affect cells. Some chemical inhibitors or natural compounds that provide this inhibition are commonly used for in vitro studies, but due to their toxicity problems, clinical use is not generally available. In this study, it was aimed to show the presence of efflux pump activity in some clinically isolated multi drug resistant strains, namely Acinetobacter baumannii, Candida albicans, Candida glabrata, Candida tropicalis, Klebsiella pneumoniae, Providencia rustigianii, Serratia odorifera, Shigella flexneri, Staphylococcus aureus and Streptococcus pneumoniae. Ethidium Bromide (EtBr) was used to determine the presence of the efflux pump activity. A concentration range of 0.5, 1.0, 1.5, 2.0 and 2.5 mg/L was used to observe the maximum EtBr concentration effluxed out the cell. After the incubation, the results were observed under UV light. As a result, it was observed that the maximum EtBr concentration effluxed out the cell changes between 1.0 and 2.0 mg/L for all strains used in the study.
Keywords: Antibiotic Resistance, Efflux Pumps, EtBr, MDR

How to cite: Altinoz E., Altuner, E.M. (2020, Nov 06). Observing the presence of efflux pump activity in some multidrug-resistant clinically isolated bacterial strains [Conference presentation]. 6th International Electronic Conference on Medicinal Chemistry, ECMC 2020, sciforum-040279.

References
  • Altinoz, E. (2019). Çoklu İlaç Direnci Gösteren Ve Efflux Pompa Sistemi Çalışan Escherichia coli Suşlarının Efflux Pompası İnhibitörlerine Karşı Cevaplarının Gözlenmesi. Yüksek Lisans Tezi. KastamonuÜniversitesi, Fen Bilimleri Enstitüsü, Kastamonu.
  • McMurry, L., Petrucci, R. E., & Levy, S. B. (1980). Active efflux of tetracycline encoded by four genetically different tetracycline resistance determinantsin Escherichia coli. Proceedings of the national academy ofsciences, 77(7), 3974-3977.
  • Özkanca, C. (2018). StaphylococcusAureus ve Escherichia Coli Bakterilerinde Kademeli Olarak Oluşturulan Antibiyotik Direncinin Bitkisel Maddeler İle Engellenmesi. Yüksek Lisans Tezi. İstanbul Üniversitesi, Sağlık Bilimleri Enstitüsü, İstanbul
  • Du, D., Wang-Kan, X., Neuberger, A., van Veen, H. W., Pos, K. M., Piddock, L. J., & Luisi, B. F. (2018). Multidrug efflux pumps: structure, function and regulation. Nature Reviews Microbiology, 16(9), 523-539.
  • Hassan, K. A., Jackson, S. M., Penesyan, A., Patching, S. G., Tetu, S. G., Eijkelkamp, B. A., Brown, M. H., Henderson, P. J. F., & Paulsen, I. T. (2013). Transcriptomic and biochemical analyses identify a family of chlorhexidine efflux proteins. Proceedings of the National Academy of Sciences, 110(50), 20254-20259.
  • Hassan, K. A., Liu, Q., Henderson, P. J., & Paulsen, I. T. (2015). Homologs of the Acinetobacter baumanniiAceI transporter represent a new family of bacterial multidrug efflux systems. MBio, 6(1), e01982-14.
  • Poole, K. (2004). Efflux-mediated multiresistance in Gram-negative bacteria. Clinic al Microbiology and infection, 10(1), 12-26.
  • Putman, M., van Veen, H. W., & Konings, W. N. (2000). Molecular properties of bacterial multidrug transporters. Microbiol. Mol. Biol. Rev., 64(4), 672-693.
  • Song, L., & Wu, X. (2016). Development of efflux pump inhibitors in antituberculosistherapy. Internationaljournal of antimicrobial agents, 47(6), 421-429.
  • Alav, I., Sutton, J. M., & Rahman, K. M. (2018). Role of bacterial efflux pumps in biofilm formation. Journal of Antimicrobial Chemotherapy, 73(8), 2003-2020.
  • Amaral, L., Kristiansen, J. E., Abebe, L. S., & Millett, W. (1996). Inhibition of the respiration of multi-drug resistant clinical isolates of Mycobacteriumtuberculosis by thioridazine: potential use for initial therapy of freshly diagnosed tuberculosis. Journal of Antimicrobial Chemotherapy, 38(6), 1049-1053.
  • Bambeke, V. F., Pagès, J. M. & Lee, V. J. (2006). Inhibitors of bacterial efflux pumps as adjuvantsin antibiotic treatments and diagnostic tools for detection of resistance by efflux. Recent patents on anti-infective drug discovery, 1(2), 157-175.
  • Lomovskaya, O., Warren, M. S., Lee, A., Galazzo, J., Fronko, R., Lee, M. A. Y., Blais, J., Cho, D., Chamberland, S., Renau, T., Leger, R., Hecker, S., Watkins, W., Hoshino, K., Ishida, H., & Lee, V. J. (2001). Identification and characterization of inhibitors of multidrug resistance efflux pumps in Pseudomonas aeruginosa: novel agents for combination therapy. Antimicrobial agents and chemotherapy, 45(1), 105-116. doi: 10.1128/AAC.45.1.105-116.2001.
  • Ordway, D., Viveiros, M., Leandro, C., Bettencourt, R., Almeida, J., Martins, M., Kristiansen, J. E., Molnar, J., & Amaral, L. (2003). Clinical concentrations of thioridazine kill intracellular multidrug-resistant Mycobacteriumtuberculosis. Antimicrobial agents and chemotherapy, 47(3), 917-922. doi: 10.1128/AAC.47.3.917–922.2003.
  • Pule, C. M., Sampson, S. L., Warren, R. M., Black, P. A., van Helden, P. D., Victor, T. C., & Louw, G. E. (2015). Efflux pump inhibitors: targeting mycobacterial efflux systems to enhance TB therapy. Journal of Antimicrobial Chemotherapy, 71(1), 1-10. doi:10.1093/jac/dkv316.
  • Ramón-García, S., Martín, C., Aínsa, J. A., & De Rossi, E. (2006). Characterization of tetracycline resistance mediated by the efflux pump Tap from Mycobacterium fortuitum. Journal of Antimicrobial Chemotherapy, 57(2), 252-259.
  • Viveiros, M., & Amaral, L. (2001). Enhancement of antibiotic activity against poly-drug resistant Mycobacteriumtuberculosis by phenothiazines. International journal of antimicrobial agents, 17(3), 225-228.
  • Martins, M., Couto, I., Viveiros, M., & Amaral, L. (2010). Identification of efflux-mediated multi-drug resistance in bacterial clinical isolates by two simple methods. In Antibiotic resistance protocols(pp. 143-157). Humana Press.
  • Altinoz E, Altuner EM. (2020) The Responses of Some Escherichia coli Clinical Isolate Strains With Multiple Drug Resistance and Overexpressed Efflux Pumps against Efflux Pump Inhibitors. International Journal of Biology and Chemistry, 13(1): 77-87.
  • Altinoz E, Altuner EM. (2019) Antibiotic Resistance and Efflux Pumps. International Journal of Innovative Research and Reviews, 3(2): 1-9.
  • PDF