Efflux Pump Inhibitors Extracted from Natural Sources

Eda Altinoz1*, Ergin Murat Altuner1

1Kastamonu University, Faculty of Science, Department of Biology, Kastamonu, Türkiye
* Corresponding author: altinozedaa@gmail.com

Background: Inhibition of efflux pumps, one of the resistance mechanisms can be achieved by using suitable efflux pump inhibitors. However, the inhibitors are mostly toxic. Therefore, scientists try to discover inhibitors having low toxicity. In this review study, it is aimed to show the studies about components obtained from natural sources, which inhibit efflux pumps.
Results: Previous studies show that reserpine can target resistance-nodulation-cell division (RND), major facilitator superfamily (MFS), ATP binding cassette superfamily (ABC) or breast cancer resistance protein. Also it was proposed that piperine reduces the minimum inhibition concentration (MIC) of ethidium bromide and also ciprofiloxacin by inhibiting NorA. 5′-methoxy-hydrococarpine isolated from Berberis fremontii has been reported to inhibit the proton pump and increase the activity of norfloxacin and various NorA substrates. Epigallocatechin gallates are known to increase tetracycline activity in Staphylococci, by acting on Tet (K) pump. Baicalein has been reported to reduce the MIC of tetracycline against methicillin-resistant Staphylococcus aureus (MRSA). Geraniol decreases the MIC value of chloramphenicol and inhibits AcrAB-TolC in Enterobacter aerogenes. Curcumin has been reported to inhibit the resistance of ciprofloxacin and norfloxacin by targeting NorA in S. aureus. Farnesol is also effective against ABC pump in azole resistant Candida albicans. It has been stated that quercetin targets MFS (NorA) and RND (AcrB) in bacteria and BCRP with P-glycoprotein in mammals. Other plant derived compounds, which have a potential of inhibiting efflux pumps are carnosic acid, carnosol, lipophilic extracts of Lycopus europaeus, coumarins, ferruginol, N-trans-feruloyl4′-O-methyldopamine, capsaicin, ursolic acid, linoleic acid, Lanatoside C, α-pinene, theobromine, conessine, carvacrol, pheophorbide A, cathinone, artesunate, diosmetin and daidzein. Apart from these, thanatine was obtained from the Podisus maculiventris, an insect, and milbemycin from microbial origin, namely Streptomyces species.
Conclusions: Although these compounds have a potential of using as efflux pump inhibitors, they have no significant clinical use due to their toxicity. To find new efflux pump inhibitors with low toxicity, scientists still conducting increasing number of experiments day by day.
Keywords: Efflux Pumps, Multidrug Resistance, Natural Sources

How to cite: Altinoz E., Altuner, E.M. (2021, Feb 19). Efflux Pump Inhibitors Extracted from Natural Sources [Conference presentation]. Beyond Sciences Initiative 2021.

References
  • Gülay, Z. (2001). Antibiyotiklere direnç mekanizmaları ve çözüm önerileri: Beta-laktamlara ve karbapenemlere direnç. Hastane İnfeksiyonları Dergisi, (5), 210-229.
  • Abdi, S. N., Ghotaslou, R., Ganbarov, K., Mobed, A., Tanomand, A., Yousefi, M., Asgharzadeh, M., & Kafil, H. S. (2020). Acinetobacter baumannii Efflux Pumps and Antibiotic Resistance. Infection and Drug Resistance,13, 423-434. doi: 10.2147/IDR.S228089.
  • Seeger, M. A., Diederichs, K., Eicher, T., Brandstatter, L., Schiefner, A., Verrey, F., & Pos, K. M. (2008). The AcrB efflux pump: conformational cycling and peristalsis lead to multidrug resistance. Current drug targets, 9(9), 729-749.
  • Singh, G., & Srivastava, A. K. (2017). Efflux Pump Inhıbıtors: Enhance Therapy And Cauterıze Tuberculosis. International Journal Of Pharmaceutical Sciences And Research, 8(7), 2762-2767. doi: 10.13040/IJPSR.0975-8232.8(7).2762-67.
  • Pule, C. M., Sampson, S. L., Warren, R. M., Black, P. A., van Helden, P. D., Victor, T. C., & Louw, G. E. (2015). Efflux pump inhibitors: targeting mycobacterial efflux systems to enhance TB therapy. Journal of Antimicrobial Chemotherapy, 71(1), 1-10. doi:10.1093/jac/dkv316.
  • Singh, M., Jadaun, G. P. S., Ramdas, K. S., Chauhan, V., Mishra, R., Gupta, K., Nair, S., Chauhan, D. S., Sharma, V. D., Venkatesan, K., & Katoch, V. M. (2011). Effect of efflux pump inhibitors on drug susceptibility of ofloxacin resistant Mycobacterium tuberculosis isolates. The Indian journal of medical research, 133(5), 535-540.
  • Stavri, M., Piddock, L. J., & Gibbons, S. (2007). Bacterial efflux pump inhibitors from natural sources. Journal of antimicrobial chemotherapy, 59(6), 1247-1260. doi: 10.1093/jac/dkl460.
  • Stermitz, F. R., Lorenz, P., Tawara, J. N., Zenewicz, L. A., & Lewis, K. (2000). Synergy in a medicinal plant: antimicrobial action of berberine potentiated by 5′-methoxyhydnocarpin, a multidrug pump inhibitor. Proceedings of the National Academy of Sciences, 97(4), 1433-1437.
  • Sharma, A., Gupta, V. K., & Pathania, R. (2019). Efflux pump inhibitors for bacterial pathogens: From bench to bedside. The Indian Journal of Medical Research, 149(2), 129-145. doi: 10.4103/ijmr.IJMR_2079_17.
  • Roccaro, A. S., Blanco, A. R., Giuliano, F., Rusciano, D., & Enea, V. (2004). Epigallocatechin-gallate enhances the activity of tetracycline in staphylococci by inhibiting its efflux from bacterial cells. Antimicrobial Agents and Chemotherapy, 48(6), 1968-1973.
  • Fujita, M., Shiota, S., Kuroda, T., Hatano, T., Yoshida, T., Mizushima, T., & Tsuchiya, T. (2005). Remarkable Synergies between Baicalein and Tetracycline, and Baicalein and β‐Lactams against Methicillin‐Resistant Staphylococcus aureus. Microbiology and immunology, 49(4), 391-396.
  • Limtrakul, P., Khantamat, O., & Pintha, K. (2005). Inhibition of P-glycoprotein function and expression by kaempferol and quercetin. Journal of chemotherapy, 17(1), 86-95.
  • Al-Karablieh, N., Weingart, H., & Ullrich, M. S. (2009). Genetic exchange of multidrug efflux pumps among two enterobacterial species with distinctive ecological niches. International journal of molecular sciences, 10(2), 629-645.
  • Ohene‐Agyei, T., Mowla, R., Rahman, T., & Venter, H. (2014). Phytochemicals increase the antibacterial activity of antibiotics by acting on a drug efflux pump. MicrobiologyOpen, 3(6), 885-896.
  • Abreu, A. C., Serra, S. C., Borges, A., Saavedra, M. J., Mcbain, A. J., Salgado, A. J., & Simoes, M. (2015). Combinatorial activity of flavonoids with antibiotics against drug-resistant Staphylococcus aureus. Microbial Drug Resistance, 21(6), 600-609.
  • Lv, L., Liu, C., Chen, C., Yu, X., Chen, G., Shi, Y., Qin, F., Ou, J., Qiu & Li, G. (2016). Quercetin and doxorubicin co-encapsulated biotin receptor-targeting nanoparticles for minimizing drug resistance in breast cancer. Oncotarget, 7(22), 32184-32199. doi: 10.18632/oncotarget.8607.
  • Kim, M. K., Kim, Y., Choo, H., & Chong, Y. (2017). Quercetin-glutamic acid conjugate with a non-hydrolysable linker; a novel scaffold for multidrug resistance reversal agents through inhibition of P-glycoprotein. Bioorganic & medicinal chemistry, 25(3), 1219-1226.
  • Lowrence, R. C., Subramaniapillai, S. G., Ulaganathan, V., & Nagarajan, S. (2019). Tackling drug resistance with efflux pump inhibitors: from bacteria to cancerous cells. Critical reviews in microbiology, 45(3), 334-353. doi: 10.1080/1040841X.2019.1607248.
  • Cao, Y., Zhuang, M. F., Yang, Y., Xie, S. W., Cui, J. G., Cao, L., Zhang, T. T., & Zhu, Y. (2014). Preliminary study of quercetin affecting the hypothalamic-pituitary-gonadal axis on rat endometriosis model. Evidence-Based Complementary and Alternative Medicine, 2014, 1-12. doi: 10.1155/2014/781684.
  • Joshi, P., Singh, S., Wani, A., Sharma, S., Jain, S. K., Singh, B., Gupta, B. D., Satti, N. K., Koul, S., Khan, I. A., Kumar, A., Bharate, S. B., & Vishwakarma , R. A., (2014). Osthol and curcumin as inhibitors of human Pgp and multidrug efflux pumps of Staphylococcus aureus: reversing the resistance against frontline antibacterial drugs. MedChemComm, 5(10), 1540-1547.
  • Shishodia, S., Sethi, G., & Aggarwal, B. B. (2005). Curcumin: getting back to the roots. Annals of the New York Academy of Sciences, 1056(1), 206-217.
  • Farazuddin, M., Dua, B., Zia, Q., Khan, A. A., Joshi, B., & Owais, M. (2014). Chemotherapeutic potential of curcumin-bearing microcells against hepatocellular carcinoma in model animals. International Journal of Nanomedicine, 9, 1139-1152.
  • Lorenzi, V., Muselli, A., Bernardini, A. F., Berti, L., Pagès, J. M., Amaral, L., & Bolla, J. M. (2009). Geraniol restores antibiotic activities against multidrug-resistant isolates from gram-negative species. Antimicrobial agents and chemotherapy, 53(5), 2209-2211.
  • Lüddeke, F., Wülfing, A., Timke, M., Germer, F., Weber, J., Dikfidan, A., Rahnfeld, T., Linder, D., Meyerdierks, A., & Harder, J. (2012). Geraniol and geranial dehydrogenases induced in anaerobic monoterpene degradation by Castellaniella defragrans. Appl. Environ. Microbiol., 78(7), 2128-2136. doi: 10.1128/AEM.07226-11.
  • Černáková, L., Dižová, S., Gášková, D., Jančíková, I., & Bujdáková, H. (2019). Impact of farnesol as a modulator of efflux pumps in a fluconazole-resistant strain of Candida albicans. Microbial Drug Resistance, 25(6), 805-812.
  • Khameneh, B., Iranshahy, M., Soheili, V., & Bazzaz, B. S. F. (2019). Review on plant antimicrobials: a mechanistic viewpoint. Antimicrobial Resistance & Infection Control, 8(1), 118.
  • Oluwatuyi, M., Kaatz, G. W., & Gibbons, S. (2004). Antibacterial and resistance modifying activity of Rosmarinus officinalis. Phytochemistry, 65(24), 3249-3254.
  • Gibbons, S., Oluwatuyi, M., Veitch, N. C., & Gray, A. I. (2003). Bacterial resistance modifying agents from Lycopus europaeus. Phytochemistry, 62(1), 83-87.
  • Altinoz, E., Altuner, E.M. (2020). Responses of some Escherichia coli clinical isolate strains with multiple drug resistance and overexpressed efflux pumps against efflux pump inhibitors. International Journal of Biology and Chemistry, 13(1): 77-87.
  • Altinoz, E., Altuner, E.M. (2019). Antibiotic resistance and efflux pumps. International Journal of Innovative Research and Reviews, 3(2): 1-9.
  • PDF