Mode of Action Investigation of Phellinus hartigii Extract on Acinetobacter lwofii using FTIR Spectroscopy

Kaan Akcay1, Kubra Teksen1*, Merve Senturan 1, Eda Altinoz1, Dilsad Ozerkan2, Ilgaz Akata3, Ergin Murat Altuner1

1Kastamonu University, Faculty of Science, Department of Biology, Kastamonu, Turkiye
2Kastamonu University, Faculty of Engineering and Architecture, Department of Genetics and Bioengineering, Kastamonu, Turkiye
3Ankara University, Faculty of Science, Department of Biology, Ankara, Turkiye
* Corresponding author: kubrateksen@kastamonu.edu.tr

Background
Antibiotic resistance has become the biggest problem of the 21st century. It is estimated that this problem will result in around 10 million deaths per year by 2050. Macrofungi are very important for the discovery of new antibiotics as natural sources with potential microbial effects. In this study, the effect of the ethanol extract of P. hartigii (PH-EtOH), which was known to have antimicrobial properties against various microorganisms, was evaluated on Trimethoprim/Sulfamethoxazole (SXT) resistant Acinetobacter lwoffii with MIC, MBC tests and analyzed with FTIR to understand the changes at the molecular level. It has been determined by MIC and MBC tests that PH-EtOH has an antibacterial effect against A. lwoffii. FTIR spectra of PH-EtOH treated and untreated samples were analyzed and it was determined that significant differences occurred in lipid (3000-2800 cm-1), protein (1800-1200 cm-1) and nucleic acid (1200-900 cm-1) specific spectral ranges. The spectral differences in these regions allowed a comprehensive understanding of the effects of PH-EtOH extract at the molecular level, such as changes in protein secondary structures and functional groups of A. lwoffii, changes in lipid composition and membrane structure, and structural and functional modifications in nucleic acid components. In addition, Amide I/Amide II, RNA/DNA, Amide I/RNA and Amide I/DNA ratios were calculated to examine changes in the structures and compositions of these molecules.
Keywords: Multi drug resistant (MDR), Acinetobacter lwoffii, Phellinus hartigii, Macrofugi

How to cite: Akcay K, Teksen K, Senturan M, Altinoz E, Ozerkan D, Akata I, Altuner EM. (2023) Mode of Action Investigation of Phellinus hartigii Extract on Acinetobacter lwofii using FTIR Spectroscopy [Conference presentation]. p.61. 16th International Symposium on Health Informatics and Bioinformatics, 4-6 October 2023.

References
  • [1] N.D. Friedman, E. Temkin, Y. Carmeli, Clin. Microbiol. Infect. 22 (2016) 416-422.
  • [2] F.C. Tenover, Am. J. Med. 119 (2006) S3-S10.
  • [3] R. Cantón, J.P. Horcajada, A. Oliver, P. R. Garbajosa, J. Vila, Enferm. Infecc. Microbiol. Clin. 31 (2013) 3-11.
  • [4] T.G. Slama, Crit. Care. 12 (2008) 1-7.
  • [5] S.I. Hay, P.C. Rao, C. Dolecek, N.P. Day, A. Stergachis, A.D. Lopez, C.J. Murray, BMC Med. 16 (2018), 1-3.
  • [6] B. Li, T.J. Webster, J. Orthop. Res. 36 (2018), 22-32.
  • [7] A.J. Alanis, Arch. Med. Res. 36 (2005), 697-705.
  • [8] A. MacGowan, E. Macnaughton, Medicine. 45 (2017), 622-628.
  • [9] Altinoz E, Altuner EM. (2019) Antibiotic Resistance and Efflux Pumps. International Journal of Innovative Research and Reviews, 3(2): 1-9.
  • [10] R. Subramani, M. Narayanasamy, K.D. Feussner, 3 Biotech. 5 (2017), 1-15.
  • [11] A. Harvey, Drug Discov. Today. 5 (2000), 294-300.
  • [12] A. Christina, V. Christapher, S. J. Bhore, Pharmacogn. Rev. 7 (2013), 11.
  • [13] G. M. Cragg, D. J. Newman, Biochim. Biophys. Acta - Gen. Subj. 1830 (2013), 3670-3695.
  • [14] J. A. Nweze, F. N. Mbaoji, G. Huang, Y. Li, L. Yang, Y. Zhang, S. Huang, L. Pan, D. Yang, Mar. Drugs 18 (2020), 145.
  • [15] C. D. Fjell, J. A. Hiss, R. E. Hancock, G. Schneider, Nat. Rev. Drug Discov. 11 (2012), 37-51.
  • [16] S. E. Rossiter, M. H. Fletcher, W. M. Wuest, Chem. Rev. 117 (2017), 12415-12474.
  • [17] B. Spellberg, R. Guidos, D. Gilbert, J. Bradley, H. W. Boucher, W. M. Scheld, J.G. Bartlett, J. Edwards Jr, Clin. Infect. Dis. 46 (2008), 155-164.
  • [18] L. D. Hogberg, A. Heddini, O. Cars, Trends Pharmacol. Sci. 31 (2010), 509-515.
  • [19] Altuner EM, Cetin B. (2018) Antimicrobial activity of Isothecium alopecuroides and potential effect of some climate elements on the activity of this bryophyte sample. Kastamonu University, Journal of Forestry Faculty, 18(2): 126-137.
  • [20] N. Bala, E. A. Aitken, A. Cusack, K. J. Steadman, Phytother. Res. 26 (2012), 465-469.
  • [21] D. D. De Silva, S. Rapior, E. Sudarman, M. Stadler, J. Xu, S. Aisyah Alias, K. D. Hyde, Fungal Divers. 62 (2013), 1-40.
  • [22] D. W. Nelson, B. C. Millar, J. R. Rao, J. E. Moore, Rev. Res. Med. Microbiol. 32 (2021), 231-236.
  • [23] J. J. Zhong, J. H. Xiao, Adv. Biochem. Eng. Biotechnol. (2009), 79-150.
  • [24] S. U. Morath, R. Hung, J. W. Bennett, Fungal Biol. Rev. 26 (2012), 73-83.
  • [25] H. S. Shen, S. Shao, J. C. Chen, T. Zhou, Compr. Rev. Food Sci. Food Saf. 16 (2017), 316-329.
  • [26] Altuner EM, Akata I, Canli K. (2012) In vitro antimicrobial screening of Bovista nigrescens (Pers.), Kastamonu universitesi, Orman Fakultesi Dergisi, 12(1): 90-96.
  • [27] Altuner EM, Akata I. (2010) Antimicrobial Activity of Some Macrofungi Extracts, Sakarya universitesi Fen Bilimleri Enstitusu Dergisi, 14(1): 45-49.
  • [28] U. K. Akpi, C. K. Odoh, E. E. Ideh, U. S. Adobu, Afr. J. Clin. Exp. Microbiol. 18 (2017), 79-85.
  • [29] U. Azeem, G. S. Dhingra, R. Shri, J. Pharmacogn. Phytochem. 7 (2018), 1161-1171.
  • [30] T. Appiah, Y. D. Boakye, C. Agyare. Evid. Based Complement. Alternat. Med. 2017
  • [31] S. Rathinavelu, Y. Zavros, J. L. Merchant. Microbes Infect. 5 (2003), 651-657.
  • [32] M. J. Baker, J. Trevisan, P. Bassan, R. Bhargava, H. J. Butler, K. M. Dorling, P.R. Fielden, S.W. Fogarty, N.J. Fullwood, K.A. Heys, C. Hughes, P. Lasch, P.L. Martin-Hirsch, B. Obinaju, G.D. Sockalingum, J. Sulé-Suso, R.J. Strong, M.J. Walsh, B.R. Wood, P. Gardner, F.L. Martin, Nat. Protoc. 9 (2014), 1771-1791.
  • [33] B. Ribeiro da Cunha, L. P. Fonseca, C. R. Calado, Metabolites. 10 (2020), 145.
  • [34] F. Faghihzadeh, N. M. Anaya, L. A. Schifman, V. Oyanedel-Craver, Nanotechnol. Environ. Eng. 1 (2016), 1-16.
  • [35] A. Alvarez-Ordóñez, D. J. M. Mouwen, M. López, M, J. Microbiol. Methods 84 (2011), 369-378.
  • [36] Canli K, Bozyel ME, Benek A, Yetgi̇n A, Senturan M, Altuner EM. (2020) Chemical composition and in vitro antimicrobial activity of Matthiola tricuspidata ethanol extract. Fresenius Environmental Bulletin, 29(10): 8863-8868.
  • [37] Canli K, Yetgin A, Benek A, Bozyel ME, Altuner EM. (2019) In Vitro Antimicrobial Activity Screening of Ethanol Extract of Lavandula stoechas and Investigation of Its Biochemical Composition. Advances in Pharmacological Sciences, Article ID 3201458.
  • [38] Altuner EM, Canli K. (2012) In vitro antimicrobial screening of Hypnum andoi A.J.E. Sm., Kastamonu universitesi, Orman Fakultesi Dergisi, 12(1): 97-101.
  • [39] Zurnaci M, Senturan M, Sener N, Gur M, Altinoz E, Sener I, Altuner EM. (2021) Studies on Antimicrobial, Antibiofilm, Efflux Pump Inhibiting, and ADMET Properties of Newly Synthesized 1,3,4-Thiadiazole Derivatives. ChemistrySelect, 6(45): 12571-12581.
  • [40] Zengin Koksal H, Ozerkan D, Altuner EM, Canli K. (2021) Syntrichia ruraliformis (Besch.) Mans., Hypnum andoi A.J.E.Sm. ve Platyhypnidium riparioides Dixon etanol ekstraktlarinin HCT116 hucre canliliği uzerindeki etkilerinin spektroskopik aCidan incelenmesi. Anatolian Bryology, 7(2): 109-118.
  • [41] R Core Team. R,. https://www.R-project.org/. (Accessed 2023)
  • [42] A. C. S. Talari, M. A. G. Martinez, Z. Movasaghi, S. Rehman, I. U. Rehman, Appl. Spectrosc. Rev. 52(2017), 456-506.
  • [43] S. L. Lee, P. G. Debenedetti, J. R. Errington, B. A. Pethica, D. J. Moore, J. Phys. Chem. B 108(2004), 3098-3106.
  • [44] F. Peng, M. Liu, X. Wang, X. Ding, Anal. Chim. Acta 1181(2021), 338899.
  • [45] I. C. Ferreira, E. M. Aguiar, A. T. Silva, L. L. Santos, L. Cardoso-Sousa, T. G. Araujo, D.W. Santos, L.R. Goulart, R. Sabino-Silva, Y. C. Maia, J. Oncol. 10 (2020), 32104176.
  • [46] N. Gault, O. Rigaud, J. L. Poncy, J. L. Lefaix, Int. J. Radiat. Biol. 81(2005), 767-779.
  • [47] L. P. Choo, J. R. Mansfield, N. Pizzi, R. L. Somorjai, M. Jackson, W. C. Halliday, H. H. Mantsch, Biospectroscopy 1(1995), 141-148.
  • [48] R. Mikutta, U. Zang, J. Chorover, L. Haumaier, K. Kalbitz, Geochim. Cosmochim. Acta 75(2011), 3135-3154.
  • [49] S. I. Kudryashov, A. A. Nastulyavichus, E. R. Tolordava, A. N. Kirichenko, I. N. Saraeva, A. A. Rudenko, Y.M. Romanova, A.Y. Panarin, A.A. Ionin, T. E. Itina, Molecules 24(2019), 4488.
  • [50] Y. M. Jung, B. Czarnik-Matusewicz, Y. Ozaki, J. Phys. Chem. B 104(2000), 7812-7817.
  • [51] P. T. T. Wong, E. D. Papavassiliou, B. Rigas, Appl. Spectrosc. 45(1991), 1563-1567.
  • [52] L. Chiriboga, P. Xie, H. Yee, V. Vigorita, D. Zarou, D. Zakim, M. Diem, Biospectroscopy 4(1998), 47-53.
  • [53] M. Trivedi, S. Patil, H. Shettigar, K. Bairwa, S. Jana, J. Med. Chem. 7(2015), 340-344.
  • [54] K. Yano, S. Ohoshima, Y. Gotou, K. Kumaido, T. Moriguchi, H. Katayama, Anal. Biochem. 287(2000), 218-225.
  • [55] X. Li, J. Lin, J. Ding, S. Wang, Q. Liu, S. Qing, 26th Annual International Conference of the IEEE, (2004), 212–215.
  • [56] G. Fischer, S. Braun, R. Thissen, W. Dott, J. Microbiol. Methods 64(2006), 63-77.
  • [57] X. Wang, Z. Qi, S. Wang, G. Liu, H. Gao, Y .Tian, Spectrochim. Acta, A Mol. Spectrosc. 79 (2011), 1660-1662.
  • [58] M. Verdonck, A. Denayer, B. Delvaux, S. Garaud, R. De Wind, C. Desmedt, C. Sotiriou, K. Willard-Gallo, E. Goormaghtigh, Analyst 141 (2016), 606-619.
  • [59] I. R. Hill, I. W. Levin, J. Chem. Phys. 70 (1979), 842-851.
  • [60] K. Gardikis, S. Hatziantoniou, K. Viras, M. Wagner, C.Demetzos, Int. J. Pharm. 318(2006), 118-123.
  • [61] J. Liu, J. C. Conboy, Langmuir 21 (2005), 9091-9097.
  • [62] A. O. Sadchenko, O. V. Vashchenko, A. Y. Puhovkin, E. F. Kopeika, N. A. Kasian, L. V. Budianska, A. V. Maschenko, Y. M. Al-Mugkhrabi, D. S. Sofronov, L. N. Lisetski, Biophysics 62 (2017), 570-579.
  • [63] S. Sivakumar, C. P. Khatiwada, J. Sivasubramanian, B. Raja, Biomed. Prev. Nutr. 4 (2014), 53-61.
  • [64] S. Passot, J. Gautier, F. Jamme, S. Cenard, P. Dumas, F. Fonseca, Analyst 140 (2015), 5920-5928.
  • [65] J. Gautier, S. Passot, C. Pénicaud, H. Guillemin, S. Cenard, P. Lieben, F. Fonseca, J. Dairy Sci. 96 (2013), 5591-5602.
  • [66] H. Liu, Q. Su, Q. Wu, W. Fang, D. Yang, W. Zheng, X. Wang, Infrared Phys Technol. 93 (2018), 340-345.
  • [67] R. N. Lewis, R. N. McElhaney, Biochim. Biophys. Acta 1828 (2013), 2347-2358.
  • [68] N. Toyran, F. Zorlu, G. Donmez, K. oğe, F. Severcan, Eur. Biophys. J. 33 (2004), 549-554.
  • [69] G. Damian, V. Canpean, Rom. J. Biophys. 15 (2005), 67-72.
  • [70] F. Elmi, A. F. Movaghar, M. M. Elmi,;H. Alinezhad, N. Nikbakhsh, Spectrochim. Acta A Mol. Biomol. Spectrosc. 187 (2017), 87-91.
  • [71] F. Wien, F. Geinguenaud, W. Grange, V. Arluison, RNA Remodeling Proteins: Methods and Protocols, Humana Press, 2021.
  • [72] K. Krishnamurthy, J. C. Tewari, J. Irudayaraj, A. Demirci, Food Bioproc. Tech. 3 (2010), 93-104.
  • [73] F. Dousseau, M. Pezolet, Biochemistry 29 (1990), 8771-8779.
  • [74] W. K. Surewicz, H. H. Mantsch, D. Chapman, Biochemistry 32 (1993), 389-394.
  • [75] A. Barth, Biochim. Biophys. Acta Bioenerg. 1767 (2007), 1073-1101.
  • [76] Z. Movasaghi, S. Rehman, D. I. Ur Rehman, Appl. Spectrosc. Rev. 43 (2008), 134-179.
  • [77] K. P. Ishida, P. R. Griffiths, Appl. Spectrosc. 47 (1993), 584-589.
  • PDF