Biofilms are produced by some microorganisms to attach to any surface. These layers are mainly in exopolysaccharide (EPS) nature, but also contain water, protein, and nucleic acids. One of the most important functions of this matrix is to protect microorganisms against drastic changes in some environmental factors such as UV light, water activity, osmotic pressure, pH, radiation, and the presence of antimicrobial agents. Being one of the main reasons for several diseases, which affect public health, biofilm is also responsible for several significant issues in livestock, agriculture, and food industries, and also in ventilation and irrigation systems.
The most common procedures used for preventing formation or removing biofilms completely, which were already formed, include limiting nutrients required for microbial growth, sterilization of surface materials to prevent bacterial attachment, or removing biofilms by chemical or mechanical treatments. However, microorganisms having the ability to form biofilms exhibit different behaviours from other microorganisms in terms of their growth rates and resistance to antibiotic or antifungal treatments. Besides, increasing resistance to antibiotics or antifungal agents in biofilm-forming microorganisms leads to remarkable problems in preventing biofilm formation or removing biofilms, which are already formed. Thus, scientists conducting researches for discovering novel agents, which can be used against both inhibiting biofilm formation and removing it. Researches presented that several phytometabolites have a great potential of being used as anti-biofilm agents.
This chapter aims to present some detailed information about biofilms and to review the researches about the potential of phytometabolites as anti-biofilm agents.
Andujar, I., Rios, J. L., Giner, R. M. & Recio, M. C. (2013) Pharmacological properties of shikonin - a review of literature since 2002. Planta Medica, 79(18), 1685-1697.
Aprotosoaie, A. C., Luca, V. S., Trifan, A. & Miron, A. (2018) Antigenotoxic potential of some dietary non-phenolic phytochemicals, in AttaUrRahman (ed), Studies in Natural Products Chemistry, Vol 60. Studies in Natural Products Chemistry. Amsterdam: Elsevier Science Bv, 223-297.
Asahi, Y., Noiri, Y., Miura, J., Maezono, H., Yamaguchi, M., Yamamoto, R., Azakami, H., Hayashi, M. & Ebisu, S. (2014) Effects of the tea catechin epigallocatechin gallate on Porphyromonas gingivalis biofilms. Journal of Applied Microbiology, 116(5), 1164-1171.
Asker, D., Awad, T., Baker, P., Howell, L. & Hatton, B. (2016) Enzyme immobilization on biomaterial surfaces for prevention of Pseudomonas aeruginosa biofilms, 10th World Biomaterials Congress. Montréal, Canada, 131.
Bakkiyaraj, D., Nandhini, J. R., Malathy, B. & Pandian, S. K. (2013) The anti-biofilm potential of pomegranate (Punica granatum L.) extract against human bacterial and fungal pathogens. Biofouling, 29(8), 929-937.
Balkrishna, A., Gupta, A. K., Singh, K., Haldar, S. & Varshney, A. (2021) Effects of fatty acids in super critical fluid extracted fixed oil from Withania somnifera seeds on gram-negative Salmonella enterica biofilms. Phytomedicine Plus, p.100047.
Becker, M. R., Paster, B. J., Leys, E. J., Moeschberger, M. L., Kenyon, S. G., Galvin, J. L., Boches, S. K., Dewhirst, F. E. & Griffen, A. L. (2002) Molecular analysis of bacterial species associated with childhood caries. Journal of Clinical Microbiology, 40(3), 1001-1009.
Beech, I. B., Sunner, J. A. & Hiraoka, K. (2005) Microbe-surface interactions in biofouling and biocorrosion processes. International Microbiology, 8(3), 157-168.
Bhadbhade, S. J., Acharya, A. B., Rodrigues, S. V. & Thakur, S. L. (2011) The antiplaque efficacy of pomegranate mouthrinse. Quintessence International, 42(1), 29-36.
Bitencourt, J. A. P. (2008) Influência de hidrocarbonetos aromáticos na relação trófica entre protistas de sedimento marinho e bactérias isoladas de talos algáceos Universidade Federal Fluminense.
Blanco, A. R., Sudano-Roccaro, A., Spoto, G. C., Nostro, A. & Rusciano, D. (2005) Epigallocatechin gallate inhibits biofilm formation by ocular staphylococcal isolates. Antimicrobial Agents and Chemotherapy, 49(10), 4339-4343.
Bordeleau, E., Mazinani, S. A., Nguyen, D., Betancourt, F. & Yan, H. B. (2018) Abrasive treatment of microtiter plates improves the reproducibility of bacterial biofilm assays. RSC Advances, 8(57), 32434-32439.
Bowden, G. H. W. (1990) Microbiology of root surface caries in humans. Journal of Dental Research, 69(5), 1205-1210.
Branda, S. S., Vik, A., Friedman, L. & Kolter, R. (2005) Biofilms: the matrix revisited. Trends in Microbiology, 13(1), 20-26.
Brouk, B. (1975) Plants consumed by man. London: Academic Press Inc
Celiksoy, V. & Heard, C. M. (2021) Antimicrobial potential of pomegranate extractsIntechOpen.
Chen, H., Zuo, Y. G. & Deng, Y. W. (2001) Separation and determination of flavonoids and other phenolic compounds in cranberry juice by high-performance liquid chromatography. Journal of Chromatography A, 913(1-2), 387-395.
Chen, M., Yu, Q. S. & Sun, H. M. (2013) Novel strategies for the prevention and treatment of biofilm related infections. International Journal of Molecular Sciences, 14(9), 18488-18501.
Chinese Pharmacopoeia Commission (2015) Pharmacopoeia of the People’s Republic of China, 1st edition. Beijing, China: Chinese Pharmacopoeia Commission.
Cho, H. S., Lee, J. H., Cho, M. H. & Lee, J. (2015) Red wines and flavonoids diminish Staphylococcus aureus virulence with anti-biofilm and anti-hemolytic activities. Biofouling, 31(1), 1-11.
Costa, M. S., Rego, A., Ramos, V., Afonso, T. B., Freitas, S., Preto, M., Lopes, V., Vasconcelos, V., Magalhaes, C. & Leao, P. N. (2016) The conifer biomarkers dehydroabietic and abietic acids are widespread in Cyanobacteria. Scientific Reports, 6, 11.
Cui, H. Y., Zhang, C. H., Li, C. Z. & Lin, L. (2020a) Inhibition mechanism of cardamom essential oil on methicillin-resistant Staphylococcus aureus biofilm. LWT-Food Science and Technology, 122, 7.
Cui, H. Y., Zhang, C. H., Li, C. Z. & Lin, L. (2020b) Inhibition of Escherichia coli O157:H7 biofilm on vegetable surface by solid liposomes of clove oil. LWT-Food Science and Technology, 117, 9.
Czaczyk, K. & Myszka, K. (2007) Biosynthesis of extracellular polymeric substances (EPS) and its role in microbial biofilm formation. Polish Journal of Environmental Studies, 16(6), 799-806.
da Costa Júnior, S. D., de Oliveira Santos, J. V., de Almeida Campos, L.A., Pereira, M. A., Magalhães, N. S. S. & Cavalcanti, I. M. F. (2018) Antibacterial and antibiofilm activities of quercetin against clinical isolates of Staphyloccocus aureus and Staphylococcus saprophyticus with resistance profile. International Journal of Environment, Agriculture and Biotechnology, 3(5), p.266213.
da Costa Waite, C. C., da Silva, G. O. A., Bitencourt, J. A. P., Sabadini-Santos, E. & Crapez, M. A. C. (2016) Copper and lead removal from aqueous solutions by bacterial consortia acting as biosorbents. Marine Pollution Bulletin, 109(1), 386-392.
da Silva, G. O., Pennafirme, S., da Costa Pereira, D., Waite, C. C., Lopes, R. T., Lima, I. C. & Crapez, M. A. (2020) Monitoring of bacterial community structure and growth: an alternative tool for biofilm microanalysis. Biofilm, 2, 100034.
Dalton, H. M., Goodman, A. E. & Marshall, K. C. (1996) Diversity in surface colonization behavior in marine bacteria. Journal of Industrial Microbiology, 17(3-4), 228-234.
De Beer, D. & Stoodley, P. (2021) Microbial biofilms, in M. Dworkin, S. Falkow, E. Rosenberg, Schleifer, K. & Stackebrandt, E. (eds), The prokaryotes: volume 1: symbiotic associations, biotechnology, applied microbiology. New York: Springer, 904-937.
DiSilvestro, R. A. & DiSilvestro, D. J. (2009) Pomegranate extract mouth rinsing effects on saliva measures relevant to gingivitis risk. Phytotherapy Research, 23(8), 1123-1127.
Dona, M., Dell'Aica, I., Calabrese, F., Benelli, R., Morini, M., Albini, A. & Garbisa, S. (2003) Neutrophil, restraint by green tea: inhibition of inflammation, associated angiogenesis, and pulmonary fibrosis. Journal of Immunology, 170(8), 4335-4341.
Donlan, R. M. (2001) Biofilms and device-associated infections. Emerging Infectious Diseases, 7(2), 277-281.
Donlan, R. M. (2002) Biofilms: microbial life on surfaces. Emerging Infectious Diseases, 8(9), 881-890.
Donlan, R. M. (2008) Biofilms on central venous catheters: is eradication possible? Bacterial Biofilms, 322, 133-161.
Donlan, R. M. & Costerton, J. W. (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clinical Microbiology Reviews, 15(2), 167-+.
dos Reis-Teixeira, F. B., Alves, V. F. & de Martinis, E. C. P. (2017) Growth, viability and architecture of biofilms of Listeria monocytogenes formed on abiotic surfaces. Brazilian Journal of Microbiology, 48(3), 587-591.
Du, W. F., Zhou, M., Liu, Z. G., Chen, Y. & Li, R. (2018) Inhibition effects of low concentrations of epigallocatechin gallate on the biofilm formation and hemolytic activity of Listeria monocytogenes. Food Control, 85, 119-126.
Elango, A. V., Vasudevan, S., Shanmugam, K., Solomon, A. P. & Neelakantan, P. (2021) Exploring the anti-caries properties of baicalin against Streptococcus mutans: an in vitro study. Biofouling, 1-9.
Eze, E. C., Chenia, H. Y. & El Zowalaty, M. E. (2018) Acinetobacter baumannii biofilms: effects of physicochemical factors, virulence, antibiotic resistance determinants, gene regulation, and future antimicrobial treatments. Infection and Drug Resistance, 11, 2277-2299.
Fallarero, A., Skogman, M., Kujala, J., Rajaratnam, M., Moreira, V. M., Yli-Kauhaluoma, J. & Vuorela, P. (2013) (+)-Dehydroabietic acid, an abietane-type diterpene, inhibits Staphylococcus aureus biofilms in vitro. International Journal of Molecular Sciences, 14(6), 12054-12072.
Flemming, H.C., Wingender, J., Griebe, T. & Mayer, C. (2005) Physicochemical properties of biofilms, in Evans, L. V. (ed), Biofilms:recent advances in their study and control. Amsterdam: Harwood Academic Publishers.
Flemming, H.C. & Leis, A. (2003) Sorption properties of biofilms, encyclopedia of environmental microbiology. John Wiley & Sons, Inc.
Flemming, H. C., Neu, T. R. & Wozniak, D. J. (2007) The EPS matrix: the "house of biofilm cells". Journal of Bacteriology, 189(22), 7945-7947.
Flemming, H. C. & Wingender, J. (2010) The biofilm matrix. Nature Reviews Microbiology, 8(9), 623-633.
Flemming, H. C., Wingender, J., Griegbe, T. & Mayer, C. (2000) Physico-chemical properties of biofilms. biofilms: recent advances in their study and control. Amsterdam: Harwood Academic Publishers.
Flemming, H. C., Wingender, J., Szewzyk, U., Steinberg, P., Rice, S. A. & Kjelleberg, S. (2016) Biofilms: an emergent form of bacterial life. Nature Reviews Microbiology, 14(9), 563-575.
Galan, D. M., Ezeudu, N. E., Garcia, J., Geronimo, C. A., Berry, N. M. & Malcolm, B. J. (2020) Eucalyptol (1,8-cineole): an underutilized ally in respiratory disorders? Journal of Essential Oil Research, 32(2), 103-110.
Gambino, M. & Cappitelli, F. (2016) Mini-review: biofilm responses to oxidative stress. Biofouling, 32(2), 167-178.
Gui-ming, Y., Gao-xiang, S., Jing, S., Tian-ming, W., Dan, X. & Chang-zhong, W. (2015) Inhibitory effects of baicalin in combination with fluconazole against Candida albicans biofilms. Chinese Journal of Mycology, 10(3), 139.
Hall-Stoodley, L., Costerton, J. W. & Stoodley, P. (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nature Reviews Microbiology, 2(2), 95-108.
Hall-Stoodley, L. & Stoodley, P. (2005) Biofilm formation and dispersal and the transmission of human pathogens. Trends in Microbiology, 13(1), 7-10.
Hall-Stoodley, L. & Stoodley, P. (2009) Evolving concepts in biofilm infections. Cellular Microbiology, 11(7), 1034-1043.
Hamid, L. L. & Al-Meani, S. A. L. (2021) Antibacterial activity of ellagic acid against methicillin-resistant Staphylococcus aureus planktonic cells and biofilm formation. Journal of Natural Remedies, 21(10(2)), 20-29.
Hancock, V., Dahl, M., Vejborg, R. M. & Klemm, P. (2010) Dietary plant components ellagic acid and tannic acid inhibit Escherichia coli biofilm formation. Journal of Medical Microbiology, 59(4), 496-498.
Haqqi, T. M., Anthony, D. D., Gupta, S., Ahmad, N., Lee, M. S., Kumar, G. K. & Mukhtar, H. (1999) Prevention of collagen-induced arthritis in mice by a polyphenolic fraction from green tea. Proceedings of the National Academy of Sciences of the United States of America, 96(8), 4524-4529.
Harding, J. L. & Reynolds, M. M. (2014) Combating medical device fouling. Trends in Biotechnology, 32(3), 140-146.
Hatt, J. K. & Rather, P. N. (2008) Role of bacterial biofilms in urinary tract infections, in T., R. (ed), Bacterial Biofilms. Heidelberg: Springer, 163-192.
Hazan, R., Que, Y. A., Maura, D., Strobel, B., Majcherczyk, P. A., Hopper, L. R., Wilbur, D. J., Hreha, T. N., Barquera, B. & Rahme, L. G. (2016) Auto poisoning of the respiratory chain by a quorum-sensing-regulated molecule favors biofilm formation and antibiotic tolerance. Current Biology, 26(2), 195-206.
Hu, P., Huang, P. & Chen, M. W. (2013) Curcumin reduces Streptococcus mutans biofilm formation by inhibiting sortase a activity. Archives of Oral Biology, 58(10), 1343-1348.
Huang, R., Li, M. & Gregory, R. L. (2011) Bacterial interactions in dental biofilm. Virulence, 2(5), 435-444.
Imai, K., Kato, H., Taguchi, Y. & Umeda, M. (2019) Biological effects of shikonin in human gingival fibroblasts via ERK 1/2 signaling pathway. Molecules, 24(19), 13.
Ito, Y., Ito, T., Yamashiro, K., Mineshiba, F., Hirai, K., Omori, K., Yamamoto, T. & Takashiba, S. (2020) Antimicrobial and antibiofilm effects of abietic acid on cariogenic Streptococcus mutans. Odontology, 108(1), 57-65.
Jia, L. S., Zhu, Z., Li, H. B. & Li, Y. F. (2019) Shikonin inhibits proliferation, migration, invasion and promotes apoptosis in NCI-N87 cells via inhibition of PI3K/AKT signal pathway. Artificial Cells Nanomedicine and Biotechnology, 47(1), 2662-2669.
Kali, A., Devaraj Bhuvaneshwar, P., Charles, M. V. & Seetha, K. S. (2016) Antibacterial synergy of curcumin with antibiotics against biofilm producing clinical bacterial isolates. Journal of Basic and Clinical Pharmacy, 7(3), 93-96.
Kalia, V. C. (2013) Quorum sensing inhibitors: an overview. Biotechnology Advances, 31(2), 224-245.
Kamaruzzaman, N. F., Kendall, S. & Good, L. (2017) Targeting the hard to reach: challenges and novel strategies in the treatment of intracellular bacterial infections. British Journal of Pharmacology, 174(14), 2225-2236.
Kavanagh, K. T., Hafer, L. J., Kim, D. W., Mann, K. K., Sherr, D. H., Rogers, A. E. & Sonenshein, G. E. (2001) Green tea extracts decrease carcinogen-induced mammary tumor burden in rats and rate of breast cancer cell proliferation in culture. Journal of Cellular Biochemistry, 82(3), 387-398.
Kelly, G. S. (2011) Quercetin. Alternative Medicine Review, 16(2), 172-195.
Kim, K. Y., Seo, H. J., Min, S. S., Park, M. & Seol, G. H. (2014) The effect of 1,8-cineole inhalation on preoperative anxiety: a randomized clinical trial. Evidence-Based Complementary and Alternative Medicine, 2014, 7.
Kim, M. K., Lee, T. G., Jung, M., Park, K. H. & Chong, Y. (2018) In vitro synergism and anti-biofilm activity of quercetin pivaloxymethyl conjugate against Staphylococcus aureus and Enterococcus species. Chemical & Pharmaceutical Bulletin, 66(11), 1019-1022.
Klare, W., Das, T., Ibugo, A., Buckle, E., Manefield, M. & Manos, J. (2016) Glutathione-disrupted biofilms of clinical Pseudomonas aeruginosa strains exhibit an enhanced antibiotic effect and a novel biofilm transcriptome. Antimicrobial Agents and Chemotherapy, 60(8), 4539-4551.
Kolenbrander, P. E. (2011) Multispecies communities: interspecies interactions influence growth on saliva as sole nutritional source. International Journal of Oral Science, 3(2), 49-54.
Kumbar, V. M., Peram, M. R., Kugaji, M. S., Shah, T., Patil, S. P., Muddapur, U. M. & Bhat, K. G. (2021) Effect of curcumin on growth, biofilm formation and virulence factor gene expression of Porphyromonas gingivalis. Odontology, 109(1), 18-28.
Lebeaux, D., Chauhan, A., Rendueles, O. & Beloin, C. (2013) From in vitro to in vivo models of bacterial biofilm-related infections. Pathogens, 2(2), 288-356.
Lee, B. Y., Singh, A., David, M. Z., Bartsch, S. M., Slayton, R. B., Huang, S. S., Zimmer, S. M., Potter, M. A., Macal, C. M., Lauderdale, D. S., Miller, L. G. & Daum, R. S. (2013a) The economic burden of community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA). Clinical Microbiology and Infection, 19(6), 528-536.
Lee, J. H., Park, J. H., Cho, H. S., Joo, S. W., Cho, M. H. & Lee, J. (2013b) Anti-biofilm activities of quercetin and tannic acid against Staphylococcus aureus. Biofouling, 29(5), 491-499.
Lee, P. & Tan, K. S. (2015) Effects of epigallocatechin gallate against Enterococcus faecalis biofilm and virulence. Archives of Oral Biology, 60(3), 393-399.
Lee, Y. S., Lee, D. Y., Kim, Y. B., Lee, S. W., Cha, S. W., Park, H. W., Kim, G. S., Kwon, D. Y., Lee, M. H. & Han, S. H. (2015) The mechanism underlying the antibacterial activity of shikonin against methicillin-resistant Staphylococcus aureus. Evidence-Based Complementary and Alternative Medicine, 2015, 9.
Li, J. H., Li, S. Q., Li, H. Z., Guo, X. Y., Guo, D., Yang, Y. P., Wang, X., Zhang, C. L., Shan, Z. G., Xia, X. D. & Shi, C. (2021) Antibiofilm activity of shikonin against Listeria monocytogenes and inhibition of key virulence factors. Food Control, 120, 9.
Li, R., Lu, J. Y., Duan, H. B., Yang, J. & Tang, C. B. (2020) Biofilm inhibition and mode of action of epigallocatechin gallate against Vibrio mimicus. Food Control, 113, 9.
Liu, F., Jin, P. P., Gong, H. S., Sun, Z. L., Du, L. H. & Wang, D. Y. (2020) Antibacterial and antibiofilm activities of thyme oil against foodborne multiple antibiotics-resistant Enterococcus faecalis. Poultry Science, 99(10), 5127-5136.
Liu, X. L., Tong, W. F., Wu, Z. Q. & Jiang, W. W. (2013) Poly(N-vinylpyrrolidone)-grafted poly(dimethylsiloxane) surfaces with tunable microtopography and anti-biofouling properties. RSC Advances, 3(14), 4716-4722.
Loesche, W. J. (1986) Role of Streptococcus mutans in human dental decay. Microbiological Reviews, 50(4), 353-380.
Lu, C. R., Liu, H., Shangguan, W. D., Chen, S. & Zhong, Q. P. (2021) Antibiofilm activities of the cinnamon extract against Vibrio parahaemolyticus and Escherichia coli. Archives of Microbiology, 203(1), 125-135.
Luo, J., Dong, B. Y., Wang, K., Cai, S. Q., Liu, T. J., Cheng, X. J., Lei, D. Q., Chen, Y. L., Li, Y. N., Kong, J. L. & Chen, Y. Q. (2017) Baicalin inhibits biofilm formation, attenuates the quorum sensing-controlled virulence and enhances Pseudomonas aeruginosa clearance in a mouse peritoneal implant infection model. Plos One, 12(4), 32.
López, D., Vlamakis, H. & Kolter, R. (2010) Biofilms. Cold Spring Harbor Perspectives in Biology, 2(7), a000398.
Marchese, A., Orhan, I. E., Daglia, M., Barbieri, R., Di Lorenzo, A., Nabavi, S. F., Gortzi, O., Izadi, M. & Nabavi, S. M. (2016) Antibacterial and antifungal activities of thymol: a brief review of the literature. Food Chemistry, 210, 402-414.
Marsh, P. D. (1999) Microbiologic aspects of dental plaque and dental caries. Dental clinics of North America, 43(4), 599-614.
Marsh, P. D. (2006) Dental plaque as a biofilm and a microbial community-implications for health and disease. BMC Oral Health, 6(1), 1-7.
Marsh, P. D., Head, D. A. & Devine, D. A. (2015) Dental plaque as a biofilm and a microbial community-Implications for treatment. Journal of Oral Biosciences, 57(4), 185-191.
Marwan, A. G. & Nagel, C. W. (1986) Characterization of cranberry benzoates and their antimicrobial properties. Journal of Food Science, 51(4), 1069-1070.
Matilla-Cuenca, L., Gil, C., Cuesta, S., Rapun-Araiz, B., Ziemyte, M., Mira, A., Lasa, I. & Valle, J. (2020) Antibiofilm activity of flavonoids on staphylococcal biofilms through targeting BAP amyloids. Scientific Reports, 10(1), 12.
Memariani, H., Memariani, M. & Ghasemian, A. (2019) An overview on anti-biofilm properties of quercetin against bacterial pathogens. World Journal of Microbiology & Biotechnology, 35(9), 16.
Merghni, A., Noumi, E., Hadded, O., Dridi, N., Panwar, H., Ceylan, O., Mastouri, M. & Snoussi, M. (2018) Assessment of the antibiofilm and antiquorum sensing activities of Eucalyptus globulus essential oil and its main component 1,8-cineole against methicillin-resistant Staphylococcus aureus strains. Microbial Pathogenesis, 118, 74-80.
Morgan-Sagastume, F., Larsen, P., Nielsen, J. L. & Nielsen, P. H. (2008) Characterization of the loosely attached fraction of activated sludge bacteria. Water Research, 42(4-5), 843-854.
Møretrø, T. & Langsrud, S. (2004) Listeria monocytogenes: biofilm formation and persistence in food-processing environments. Biofilms, 1(2), 107-121.
NCBI (2021a) PubChem compound summary for CID 6850745, thyme oil, 2021a. Available online: [Accessed 22.03.2021].
NCBI (2021b) PubChem compound summary for CID 3314, eugenol, 2021b. Available online: [Accessed 22.03.2021].
NCBI (2021c) PubChem compound summary for CID 2758, eucalyptol, 2021c. Available online: [Accessed 22.03.2021].
NCBI (2021d) PubChem compound summary for CID 479503, shikonin, 2021d. Available online: [Accessed 22.03.2021].
NCBI (2021e) PubChem compound summary for CID 10569, abietic acid, 2021e. Available online: [Accessed 22.03.2021].
NCBI (2021f) PubChem compound summary for CID 969516, curcumin, 2021f. Available online: [Accessed 22.03.2021].
NCBI (2021g) PubChem compound summary for CID 5281855, ellagic acid, 2021g. Available online: [Accessed 15.03.2021].
NCBI (2021h) PubChem compound summary for CID 65064, (-)-epigallocatechin gallate, 2021h. Available online: [Accessed 15.03.2021].
NCBI (2021i) PubChem compound summary for CID 161619, syringopicroside, 2021i. Available online: [Accessed 15.03.2021].
NCBI (2021j) PubChem compound summary for CID 64982, baicalin, 2021j. Available online: [Accessed 15.03.2021].
NCBI (2021k) PubChem compound summary for CID 5280343, quercetin, 2021k. Available online: [Accessed 16.03.2021].
Neelakantan, P., Subbarao, C., Sharma, S., Subbarao, C. V., Garcia-Godoy, F. & Gutmann, J. L. (2013) Effectiveness of curcumin against Enterococcus faecalis biofilm. Acta Odontologica Scandinavica, 71(6), 1453-1457.
Neyens, E., Baeyens, J., Dewil, R. & de Heyder, B. (2004) Advanced sludge treatment affects extracellular polymeric substances to improve activated sludge dewatering. Journal of Hazardous Materials, 106(2-3), 83-92.
Okuda, K., Nagahori, R., Yamada, S., Sugimoto, S., Sato, C., Sato, M., Iwase, T., Hashimoto, K. & Mizunoe, Y. (2018) The composition and structure of biofilms developed by Propionibacterium acnes isolated from cardiac pacemaker devices. Frontiers in Microbiology, 9, 12.
Ong, K. S., Mawang, C. I., Daniel-Jambun, D., Lim, Y. Y. & Lee, S. M. (2018) Current anti-biofilm strategies and potential of antioxidants in biofilm control. Expert Review of Anti-Infective Therapy, 16(11), 855-864.
Osada, K., Takahashi, M., Hoshina, S., Nakamura, M., Nakamura, S. & Sugano, M. (2001) Tea catechins inhibit cholesterol oxidation accompanying oxidation of low density lipoprotein in vitro. Comparative Biochemistry and Physiology C-Toxicology & Pharmacology, 128(2), 153-164.
Ouyang, J., Sun, F., Feng, W., Sun, Y., Qiu, X., Xiong, L., Liu, Y. & Chen, Y. (2016) Quercetin is an effective inhibitor of quorum sensing, biofilm formation and virulence factors in Pseudomonas aeruginosa. Journal of Applied Microbiology, 120(4), 966-974.
Ozma, M. A., Khodadadi, E., Pakdel, F., Kamounah, F. S., Yousefi, M., Yousefi, B., Asgharzadeh, M., Ganbarov, K. & Kafil, H. S. (2021) Baicalin, a natural antimicrobial and anti-biofilm agent. Journal of Herbal Medicine, 27, 100432.
Packiavathy, I., Priya, S., Pandian, S. K. & Ravi, A. V. (2014) Inhibition of biofilm development of uropathogens by curcumin - an anti-quorum sensing agent from Curcuma longa. Food Chemistry, 148, 453-460.
Palumbo, F. S., Volpe, A. B., Cusimano, M. G., Pitarresi, G., Giammona, G. & Schillaci, D. (2015) A polycarboxylic/amino functionalized hyaluronic acid derivative for the production of pH sensible hydrogels in the prevention of bacterial adhesion on biomedical surfaces. International Journal of Pharmaceutics, 478(1), 70-77.
Peng, L. Y., Yuan, M., Wu, Z. M., Song, K., Zhang, C. L., An, Q., Xia, F., Yu, J. L., Yi, P. F., Fu, B. D. & Shen, H. Q. (2019) Anti-bacterial activity of baicalin against APEC through inhibition of quorum sensing and inflammatory responses. Scientific Reports, 9, 11.
Pennafirme, S., Lima, I., Bitencourt, J. A., Crapez, M. A. C. & Lopes, R. T. (2015) Microbial biofilm study by synchrotron x-ray microscopy. Radiation Physics and Chemistry, 116, 116-119.
Phillips, M. A. & Croteau, R. B. (1999) Resin-based defenses in conifers. Trends in Plant Science, 4(5), 184-190.
Qayyum, S., Sharma, D., Bisht, D. & Khan, A. U. (2019) Identification of factors involved in Enterococcus faecalis biofilm under quercetin stress. Microbial Pathogenesis, 126, 205-211.
Quave, C. L., Estevez-Carmona, M., Compadre, C. M., Hobby, G., Hendrickson, H., Beenken, K. E. & Smeltzer, M. S. (2012) Ellagic acid derivatives from Rubus ulmifolius inhibit Staphylococcus aureus biofilm formation and improve response to antibiotics. Plos One, 7(1), 16.
Raederstorff, D. G., Schlachter, M. F., Elste, V. & Weber, P. (2003) Effect of EGCG on lipid absorption and plasma lipid levels in rats. Journal of Nutritional Biochemistry, 14(6), 326-332.
Richet, H. & Fournier, P. E. (2006) Nosocomial infections caused by Acinetobacter baumannii: a major threat worldwide. Infection Control and Hospital Epidemiology, 27(7), 645-646.
Rico, A., McCraw, S. L. & Preston, G. M. (2011) The metabolic interface between Pseudomonas syringae and plant cells. Current Opinion in Microbiology, 14(1), 31-38.
Roccaro, A. S., Blanco, A. R., Giuliano, F., Rusciano, D. & Enea, V. (2004) Epigallocatechin-gallate enhances the activity of tetracycline in staphylococci by inhibiting its efflux from bacterial cells. Antimicrobial Agents and Chemotherapy, 48(6), 1968-1973.
Rodriguez-Bano, J., Marti, S., Soto, S., Fernandez-Cuenca, F., Cisneros, J. M., Pachon, J., Pascual, A., Martinez-Martinez, L., McQueary, C., Actis, L. A., Vila, J. & Spanish Grp Study, N. (2008) Biofilm formation in Acinetobacter baumannii: associated features and clinical implications. Clinical Microbiology and Infection, 14(3), 276-278.
Rodríguez-Baño, J., Cisneros, J. M., Fernández-Cuenca, F., Ribera, A., Vila, J., Pascual Hernández, Á., Martínez-Martínez, L., Bou, G., Pachón & Díaz, J. (2004) Clinical features and epidemiology of Acinetobacter baumanni colonization and infection in Spanish hospitals. Infection Control and Hospital Epidemiology, 25(10), 819-824.
Rodríguez-Baño, J., Pascual, Á., Gálvez, J., Muniain, M. Á., Martínez-Martínez, L., Pérez-Cano, R. & Perea, E. J. (2003) Bacteriemias por Acinetobacter baumannii: características clínicas y pronósticas. Enfermedades Infecciosas y Microbiologia Clinica, 21(5), 242-247.
Sartippour, M. R., Shao, Z. M., Heber, D., Beatty, P., Zhang, L. P., Liu, C. H., Ellis, L., Liu, W., Go, V. L. & Brooks, M. N. (2002) Green tea inhibits vascular endothelial growth factor (VEGF) induction in human breast cancer cells. Journal of Nutrition, 132(8), 2307-2311.
Seyedtaghiya, M. H., Fasaei, B. N. & Peighambari, S. M. (2021) Antimicrobial and antibiofilm effects of Satureja hortensis essential oil against Escherichia coli and Salmonella isolated from poultry. Iranian Journal of Microbiology, 13(1), 74-80.
Sharma, R. A., Gescher, A. J. & Steward, W. P. (2005) Curcumin: the story so far. European Journal of Cancer, 41(13), 1955-1968.
Singer, S. W., Erickson, B. K., VerBerkmoes, N. C., Hwang, M., Shah, M. B., Hettich, R. L., Banfield, J. F. & Thelen, M. P. (2010) Posttranslational modification and sequence variation of redox-active proteins correlate with biofilm life cycle in natural microbial communities. Isme Journal, 4(11), 1398-1409.
Sivasankar, C., Maruthupandiyan, S., Balamurugan, K., Bhaskar, J. P., Krishnan, V. & Pandian, S. K. (2016) A combination of ellagic acid and tetracycline inhibits biofilm formation and the associated virulence of Propionibacterium acnes in vitro and in vivo. Biofouling, 32(4), 397-410.
Sreeremya, S. (2017) A review on microbial biofilm. International Journal of Advance Research and Development, 2, 7-10.
Stenvang, M., Dueholm, M. S., Vad, B. S., Seviour, T., Zeng, G. H., Geifman-Shochat, S., Sondergaard, M. T., Christiansen, G., Meyer, R. L., Kjelleberg, S., Nielsen, P. H. & Otzen, D. E. (2016) Epigallocatechin gallate remodels overexpressed functional amyloids in Pseudomonas aeruginosa and increases biofilm susceptibility to antibiotic treatment. Journal of Biological Chemistry, 291(51), 26540-26553.
Stoodley, P., Lewandowski, Z., Boyle, J. D. & Lappin-Scott, H. M. (1999) The formation of migratory ripples in a mixed species bacterial biofilm growing in turbulent flow. Environmental Microbiology, 1(5), 447-455.
Stoodley, P., Sauer, K., Davies, D. G. & Costerton, J. W. (2002) Biofilms as complex differentiated communities. Annual Review of Microbiology, 56, 187-209.
Sueoka, N., Suganuma, M., Sueoka, E., Okabe, S., Matsuyama, S., Imai, K., Nakachi, K. & Fujiki, H. (2001) A new function of green tea: prevention of lifestyle-related diseases. Healthy Aging for Functional Longevity: Molecular and Cellular Interactions in Senescence, 928, 274-280.
Sutherland, I. W. (2001) Biofilm exopolysaccharides: a strong and sticky framework. Microbiology-Uk, 147, 3-9.
Tang, Y., Bai, J. W., Yang, Y., Bai, X. D., Bello-Onaghise, G., Xu, Y. Q. & Li, Y. H. (2021) Effect of syringopicroside extracted from Syringa oblata Lindl on the biofilm formation of Streptococcus suis. Molecules, 26(5), 19.
Vasconcelos, L. C. D. S., Sampaio, F. C., Sampaio, M. C. C., Pereira, M. D. S. V., Higino, J. S. & Peixoto, M. H. P. (2006) Minimum inhibitory concentration of adherence of Punica granatum Linn (pomegranate) gel against S. mutans, S. mitis and C. albicans. Brazilian Dental Journal, 17(3), 223-227.
Vattem, D. A. & Shetty, K. (2005) Biological functionality of ellagic acid: a review. Journal of Food Biochemistry, 29(3), 234-266.
Vazquez-Armenta, F. J., Bernal-Mercado, A. T., Tapia-Rodriguez, M. R., Gonzalez-Aguilar, G. A., Lopez-Zavala, A. A., Martinez-Tellez, M. A., Hernandez-Onate, M. A. & Ayala-Zavala, J. F. (2018) Quercetin reduces adhesion and inhibits biofilm development by Listeria monocytogenes by reducing the amount of extracellular proteins. Food Control, 90, 266-273.
Vikram, A., Jayaprakasha, G. K., Jesudhasan, P. R., Pillai, S. D. & Patil, B. S. (2010) Suppression of bacterial cell-cell signalling, biofilm formation and type III secretion system by citrus flavonoids. Journal of Applied Microbiology, 109(2), 515-527.
Wattanasatcha, A., Rengpipat, S. & Wanichwecharungruang, S. (2012) Thymol nanospheres as an effective anti-bacterial agent. International Journal of Pharmaceutics, 434(1-2), 360-365.
Weber, J. M., Ruzindana-Umunyana, A., Imbeault, L. & Sircar, S. (2003) Inhibition of adenovirus infection and adenain by green tea catechins. Antiviral Research, 58(2), 167-173.
Weinreb, O., Mandel, S., Amit, T. & Youdim, M. B. H. (2004) Neurological mechanisms of green tea polyphenols in Alzheimer's and Parkinson's diseases. Journal of Nutritional Biochemistry, 15(9), 506-516.
Wolfram, S., Raederstorff, D., Preller, M., Wang, Y., Teixeira, S. R., Riegger, C. & Weber, P. (2006) Epigallocatechin gallate supplementation alleviates diabetes in rodents. Journal of Nutrition, 136(10), 2512-2518.
Wu, H., Moser, C., Wang, H. Z., Hoiby, N. & Song, Z. J. (2015) Strategies for combating bacterial biofilm infections. International Journal of Oral Science, 7(1), 1-7.
Xu, X., Zhou, X. D. & Wu, C. D. (2012) Tea catechin epigallocatechin gallate inhibits Streptococcus mutans biofilm formation by suppressing gtf genes. Archives of Oral Biology, 57(6), 678-683.
Yan, Y., Tan, F., Miao, H., Wang, H. & Cao, Y. Y. (2019) Effect of shikonin against Candida albicans biofilms. Frontiers in Microbiology, 10, 11.
Zhang, A., Mu, H. B., Zhang, W. X., Cui, G. T., Zhu, J. & Duan, J. Y. (2013) Chitosan coupling makes microbial biofilms susceptible to antibiotics. Scientific Reports, 3, 7.
Zhang, X. W., Lue, S. W., Han, J. H., Sun, S., Wang, L. M. & Li, Y. J. (2011) Preparation, characterization and in vivo distribution of solid lipid nanoparticles loaded with syringopicroside. Pharmazie, 66(6), 404-407.
Zhao, M., Tang, W. X., Li, J., Bai, L. M., Wang, J. L., Zhang, W. Z. & Zhang, S. J. (2016) Two new monoterpenoids from the fresh leaves of Syringa oblata. Chemistry of Natural Compounds, 52(6), 1023-1025.
Zhao, Y. Y., Qu, Y., Tang, J. N., Chen, J. & Liu, J. (2021) Tea catechin inhibits biofilm formation of methicillin-resistant S. aureus. Journal of Food Quality, 2021, 7.
Canli K, Şimşek Ö, Yetgin A, Akata I, Altuner EM. (2017) Determination of the chemical composition and antimicrobial activity of Frankenia hirsuta, Bangladesh Journal of Pharmacology, 12(4):463-469.
Bozyel ME, Merdamert Bozyel E, Canlı K, Altuner EM. (2019). Anticancer Uses of Medicinal Plants in Turkish Traditional Medicine. KSU Journal of Agriculture and Nature, 22(Suppl. 2): 465-484.