High Hydrostatic Pressure (HHP) is a green extraction method, which finds several uses in different branches of science. HHP is a novel non-thermal technique mostly used in food processing. The “high pressure” in HHP states an ultra-high cold isostatic hydraulic pressure, which processes basically at low or mild process temperatures (<45 °C) ranging between 100 and 800 MPa. In some applications, this pressure can extend up to 1000 MPa. In food processing, there are several purposes for using HHP, such as sterilizing, coagulating, and gelatinizing food samples. Alternatively, HHP has many remarkable uses in some branches of science besides food processing. This chapter aims to present the capabilities of HHP as a green extraction technique in the food and pharmaceutical industries.
[1] Tiwari, B. K.; O'Donnell, C. P.; Cullen, P. J., Effect of non thermal processing technologies on the anthocyanin content of fruit juices. Trends Food Sci. Technol., 2009, 20 (3-4), 137-145.
[2] Muntean, M. V.; Marian, O.; Barbieru, V.; Catunescu, G. M.; Ranta, O.; Drocas, I.;Terhes, S., High Pressure Processing in Food Industry - Characteristics and Applications. 5th International Conference - Agriculture for Life, Life for Agriculture, 2016, 10, 377-383.
[3] Altuner, E. M.; Ceter, T.; Alpas, H., Effect of high hydrostatic pressure on the profile of proteins extracted from Betula pendula pollens. High Press. Res., 2014,. 34 (4), 470-481.
[4] Altuner, E. M.; Tokusoglu, O., The effect of high hydrostatic pressure processing on the extraction, retention and stability of anthocyanins and flavonols contents of berry fruits and berry juices. Int. J. Food Sci. Technol., 2013, 48 (10), 1991-1997.
[5] Oey, I.; Van der Plancken, I.; Van Loey, A.; Hendrickx, M., Does high pressure processing influence nutritional aspects of plant based food systems?. Trends Food Sci. Technol., 2008, 19 (6), 300-308.
[6] Rawson, A.; Patras, A.; Tiwari, B. K.; Noci, F.; Koutchma, T.; Brunton, N., Effect of thermal and non thermal processing technologies on the bioactive content of exotic fruits and their products: Review of recent advances. Food Res. Int., 2011, 44 (7), 1875-1887.
[7] Altuner, E. M.; Alpas, H.; Erdem, Y. K.; Bozoglu, F., Effect of high hydrostatic pressure on physicochemical and biochemical properties of milk. Eur. Food Res. Technol., 2006, 222 (3-4), 392-396.
[8] Le Noble, W. J., Organic High Pressure Chemistry. Amsterdam: Elsevier, 1988.
[9] Richard, J. S., High Pressure Phase Behaviour of Multicomponent Fluid Mixtures. Amsterdam: Elsevier, 1992.
[10] Altuner, E. M., Effect of high hydrostatic pressure (HHP) on the surface hydrophobicity of milk proteins," MSc. Thesis, Middle East Technical University, Ankara, Turkey, 2002.
[11] Shouqin, Z.; Jun, X.; Changzheng, W., Effect of high hydrostatic pressure on extraction of flavonoids in propolis. Food Sci. Technol. Int., 2005, 11 (3), 213-216.
[12] Bertucco, A.; Vetter, G., High pressure process technology: Fundamentals and applications. Amsterdam: Elsevier, 2001.
[13] Alpas, H.; Ozilgen, M.; Bozoglu, F.; Katnas, S., Mathematical modeling of survival and weight loss of Baker's yeast during drying. Enzyme Microb. Technol., 1996, 19 (5), 348-351.
[14] Peter, B. B.; Ivan, D.; Robert, E. M., High Pressure Biology and Medicine. New York: University of Rochester Press, 1998.
[15] Alpas, H.; Kalchayanand, N.; Bozoglu, F.; Ray, B., Interactions of high hydrostatic pressure, pressurization temperature and pH on death and injury of pressure-resistant and pressure-sensitive strains of foodborne pathogens. Int. J. Food Microbiol., 2000, 60 (1), 33-42.
[16] Alpas, H.; Bozoglu, F., Inactivation of Staphylococcus aureus and Listeria monocytogenes in milk and cream of chicken soup by high hydrostatic pressure and bacteriocins. High Press. Res., 2002, 22 (3-4), 681-684.
[17] Bozoglu, F.; Alpas, H.; Kaletunc, G., Injury recovery of foodborne pathogens in high hydrostatic pressure treated milk during storage. FEMS Immunol. Med. Microbiol., 2004, 40 (3), 243-247.
[18] Penas, E.; Gomez, R.; Frias, J.; Vidal-Valverde, C., Application of high-pressure treatment on alfalfa (Medicago sativa) and mung bean (Vigna radiata) seeds to enhance the microbiological safety of their sprouts. Food Control, 2008, 19 (7), 698-705.
[19] Penas, E.; Gomez, R.; Frias, J.; Vidal-Valverde, C., Effects of combined treatments of high pressure, temperature and antimicrobial products on germination of mung bean seeds and microbial quality of sprouts. Food Control, 2010, 21 (1), 82-88.
[20] Altuner, E. M.; Ceter, T.; Alpas, H., High hydrostatic pressure processing: a method having high success potential in pollen protein extraction. High Press. Res., 2012, 32 (2), 291-298.
[21] Altuner, E. M., Potential of High Hydrostatic Pressure to Improve the Production of Plants Used as Food, in Advances in Biotechnology for Food Industry, vol. 14, A. M. Holban and A. M. Grumezescu Eds., London: Academic Press Ltd-Elsevier Science Ltd, 2018, pp. 213-241.
[22] Rivalain, N.; Roquain, J.; Demazeau, G., Development of high hydrostatic pressure in biosciences: Pressure effect on biological structures and potential applications in Biotechnologies. Biotechnol. Adv., 2010, 28 (6), 659-672.
[23] Regnard, P., Note sur les conditions de la vie dans les profondeurs de la mer. C. R. Seances Soc.Biol., 1884, 36, 164-168.
[24] Royer, H., Action des hautes pressions sur quelques bactéries. Archives de Physiologie Normale et Pathologique, 1895, 7, 12-17.
[25] Hite, B., The effect of pressure in the preservation of milk: a preliminary report. W. Va. Agr. Exp. St. Bull., 1899, 58, 1866-1921.
[26] Bridgman, P. W., The coagulation of albumen by pressure. J. Biol. Chem., 1914, 19, 511-512.
[27] Bridgman, P. W., The physics of high pressure. London: Bell and Sons, 1949.
[28] Basset, J., Appareil pour réaliser des expériences physiques ou chimiques à toutes températures variées sous des pressions liquides de 15000 kg/cm3. C. R. Acad. Hebd. Seances Acad. Sci., 1927, 185, 343-345.
[29] Basset, J.; Macheboeuf, M. A., Etude sur les effets biologiques des ultra-pressions: résistance des bactéries, des diastases et des toxines aux pressions très élevées. C. R. Acad. Hebd. Seances Acad. Sci., 1932, 195, 1431-1433.
[30] Basset, J.; Lepine, P.; Chaumont, L., Effects of high pressures on the poliomyelitis virus (Lansing strain). Ann. Inst. Pasteur, 1956, 90, 575-593.
[31] Bovenkerk, H. P.; Bundy, F. P.; Hall, H. T.; Strong, H. M.; Wentorf, R. H., Preparation of diamond. Nature, 1956, 184 (4693), 1094-1098.
[32] Liander, H.; Lundblad, E., Some observations on the synthesis of diamonds. Arkiv. Kemi., 1960, 16, 139-149, 1960.
[33] Timson, W. J.; Short, A. J., Resistance of microorganisms to hydrostatic pressure. Biotechnol. Bioeng., 1965, 7 (1), 139.
[34] Gould, G. W.; Sale, A. J. H., Initiation of germination of bacterial spores by hydrostatic pressure", J. Gen. Microbiol., 1970, 60, 335.
[35] Wilson, D. C., High pressure sterilization, in 34th Annual Meeting of the Institute of Food Technologists, New Orleans, 1974.
[36] Marquis, R. E., High-pressure microbial physiology, in Advances in Microbial Physiology, vol. 14, 1976, pp. 159-241.
[37] Charm, S. E.; H.E., L.; Carver, J., A simple system for extending refrigerated, nonfrozen preservation of biological material using pressure. Cryobiology, 1977, 14 (5), 625-636.
[38] Marquis, R. E.; Matsumara, P., Microbial life under pressure, in Microbial life in extreme environments, D. J. Kushner Ed. New York: Academic Press, 1978, pp. 105-157.
[39] Morild, E., The Theory of Pressure Effects on Enzymes, in Advances in Protein Chemistry, vol. Volume 34, C. B. Anfinsen, J. T. Edsall, and F. M. Richards Eds. Academic Press, 1981, pp. 93-166.
[40] Heremans, K., High-pressure effects on proteins and other biomolecules. Annu. Rev. Biophys., 1982, 11, 1-21.
[41] Hoover, D. G.; Metrick, C.; Papineau, A. M.; Farkas, D. F.; Knorr, D.; Biological effects of high hydrostatic-pressure on food microorganisms. Food Technol., 1989, 43 (3), 99-107.
.
[42] Popper, L.; Knorr, D., Applications of high-pressure homogenization for food preservation. Food Technol., 1990, 44 (7), 84.
[43] Farr, D., High pressure technology in the food industry. Trends Food Sci. Technol., 1990, 1, 14-16.
[44] Hayashi, R., Application of high pressure to food processing and preservation: philosophy and development, in Engineering and food, Vol 2, W. E. L. Spiess and H. Schubert Eds. London: Elsevier, 1989, pp. 815-826.
[45] Hayashi, R., Pressure processed food: research and development. Kyoto (Japan): San-Ei Publishing, 1990.
[46] Horie, Y.; Kimura, K.; Ida, M.; Yosida, Y.; Ohki, K., Jam preparation by pressurization. Nippon Nogeik. Kaishi, 1991, 65 (6), 975-980.
[47] Ogawa, H.; Fukuhisa, K.; Kubo, Y.; Fukumoto, H.; Pressure inactivation of yeasts, molds, and pectinesterase in satsuma mandarin juice - effects of juice concentration, ph, and organic-acids, and comparison with heat sanitation. Agric. Biol. Chem., 1990, 54 (5), 1219-1225.
[48] Tanaka, T.; Hatanaka, K., Application of hydrostatic-pressure to yogurt to prevent its after-acidification. Nippon Shokuhin Kagaku Kogaku Kaishi J. Jpn. Soc. Food Sci., 1992, 39 (2), 173-177.
[49] Balny, C.; Hayashi, R.; Heremans, K.; Masson, P., High pressure and biotechnology, in First European seminar on high pressure and biotechnology, joint meeting with the fifth symposium on high pressure and food science, La Grande Motte (France), C. Balny, R. Hayashi, K. Heremans, and P. Masson, Eds., 1992 John Libbey Eurotext, pp. 329-331.
[50] Cheftel, J. C., Review: High-pressure, microbial inactivation and food preservation. Food Sci. Technol. Int., 1995, 1 (2-3), 75-90.
[51] Cheftel, J. C.; Culioli, J., Effects of high pressure on meat: A review. Meat Sci., 1997, 46 (3), 211-236.
[52] Demazeau, G., Les hautes pressions: développements potentiels, in L'avenir des hautes pressions dans l'industrie agroalimentaire, O.-N. P. Agro-alimentaire Ed. Nantes (France), 1993, pp. 91-109.
[53] Hoover, D. G., Pressure effects on biological-systems. Food Technol., 1993, 47 (6), 150-155.
[54] Knorr, D., Effects of high-hydrostatic-pressure processes on food safety and quality. Food Technol., 1993, 47, 6, 156.
[55] Tauscher, B., Pasteurization of food by hydrostatic high-pressure - chemical aspects. Z. Lebensm. Unters. Forsch., 1995, 200 (1), 3-13.
[56] Tonello, C.; Largeteau, A.; Jolibert, F.; Deschamps, A; Demazeau, G., Destruction par hautes pressions de micro-organismes contaminant des produits laitiers. L'électricité dans l'agro-alimentaire, 1993, 43-48.
[57] Travis, A. S., High pressure industrial chemistry: the first steps, 1909-1913, and the impact, in Determinants in the evolution of the European chemical industry, 1900-1939: new technologies, political frameworks, markets and companies, A. S. Travis Ed. London: Kluwer, 1998, pp. 3-21.
[58] Tokuşoğlu, Ö.; Swanso, B. G., Improving Food Quality with Novel Food Processing: Chemistry, Functionality & Rheology. Florida: CRC Press, Taylor & Francis Group, 2011.
[59] Altuner, E. M.; Çeter, T.; Alpas, H., High hydrostatic pressure extraction of phenolic compounds from Maclura pomifera fruits. Afr. J. Biotechnol., 2012, 11 (4), 930-937.
[60] Zhang, S. Q.; Zhu, J. J.; Wang, C. Z., Novel high pressure extraction technology. Int. J. Pharm., 2004, 278 (2), 471-474.
[61] US Food and Drug Administration Center for Food Safety and Applied Nutrition. "Kinetics of microbial inactivation for alternative food processing technologies - high pressure processing." Available: http://www.fda.gov/Food/FoodScienceResearch/SafePracticesforFoodProcesses/ucm101 456.htm [Accessed Jun. 13. 2015].
[62] Corrales, M.; Toepfl, S.; Butz, P.; Knorr, D.; Tauscher, B., Extraction of anthocyanins from grape by-products assisted by ultrasonics, high hydrostatic pressure or pulsed electric fields: A comparison. Innov. Food Sci. Emerg. Technol., 2008, 9 (1), 85-91.
[63] Corrales, M.; Garcia, A. F.; Butz, P.; Tauscher, B., Extraction of anthocyanins from grape skins assisted by high hydrostatic pressure. J. Food Eng., 2009, 90 (4), 415-421.
[64] Tokuşoğlu, Ö.; Stoner, G., Phytochemical Bioactives in Berry Fruits, in Fruit and Cereal Bioactives: Sources, Chemistry & Applications, Ö. Tokuşoğlu and C. Hall Eds. Florida: CRC Press, Taylor & Francis Group, 2011.
[65] Tokuşoğlu, Ö.; Hall, C., Fruit and Cereal Bioactives: Sources, Chemistry & Applications. Florida: CRC Press, Taylor & Francis Group, 2011.
[66] Tokuşoğlu, Ö.; Doona, C. J., High Pressure Processing Technology on Bioactives in Fruits & Cereals, in Fruit and Cereal Bioactives: Sources, Chemistry & Applications, Ö. Tokuşoğlu and C. Hall Eds. Florida: CRC Press, Taylor & Francis Group, 2011.
[67] Zhang, S. Q.; Chen, R. Z.; Wang, C. Z., Experiment study on ultrahigh pressure extraction of ginsenosides. J. Food Eng., 2007, 79 (1), 1-5.
[68] Yordanov, D. G.; Angelova, G. V., High pressure processing for foods preserving. Biotechnol. Biotechnol. Equip., 2010, 24 (3), 1940-1945.
[69] Patterson, M. F.; Quinn, M.; Simpson, R.; Gilmour, A., Sensitivity of vegetative pathogens to high hydrostatic-pressure treatment in phosphate-buffered saline and foods. J. Food Prot., 1995, 58 (5), 524-529.
[70] Patterson, M. F.; Quinn, M.; Simpson, R.; Gilmour, A., Studies on the inactivation by pressure of microorganisms, in High Pressure Processing of Foods, D. A. Ledward, D. E. Johnston, R. G. Earnshaw, and A. P. M. Hasting Eds. Nottingham: Nottingham University Press, 1995, pp. 47-63.
[71] Perriercornet, J. M.; Marechal, P. A.; Gervais, P., A new design intended to relate high-pressure treatment to yeast-cell mass-transfer. J. Biotechnol., 1995, 41 (1), 49-58.
[72] Rasanayagam, V.; Balasubramaniam, V. M.; Ting, E.; Sizer, C. E.; Bush, C.; Anderson, C., Compression heating of selected fatty food materials during high-pressure processing. J. Food Sci., 2003, 68 (1), 254-259.
[73] Patazca, E.; Koutchma, T.; Balasubramaniam, V. M., Quasi-adiabatic temperature increase during high pressure processing of selected foods. J. Food Eng., 2007, 80 (1), 199-205.
[74] Polydera, A. C.; Stoforos, N. G.; Taoukis, P. S., Comparative shelf life study and vitamin C loss kinetics in pasteurised and high pressure processed reconstituted orange juice. J. Food Eng., 2003, 60 (1), 21-29.
[75] Penchalaraju, M.; Shireesha, B., Preservation of foods by high-pressure processing - a review. Indian J. Sci. Technol., 2013, 1, 30-38.
[76] Bello, E. F.; Martinez, G. G.; Ceberio, B. F. K.; Rodrigo, D.; Lopez, A. M., High Pressure Treatment in Foods. Foods, 2014, 3 (3), 476-490.
[77] San Martin, M. F.; Barbosa-Canovas, G. V.; Swanson, B. G., Food processing by high hydrostatic pressure. Crit. Rev. Food Sci. Nutr., 2002, 42 (6), 627-645.
[78] Patterson, M. F.; Kilpatrick, D. J., The combined effect of high hydrostatic pressure and mild heat on inactivation of pathogens in milk and poultry. J. Food Prot., 1998, 61 (4), 432-436.
[79] Yuste, J.; Mor-Mur, M.; Capellas, M.; Pla, R., Listeria innocua and aerobic mesophiles during chill storage of inoculated mechanically recovered poultry meat treated with high hydrostatic pressure. Meat Sci., 1999, 53 (4), 251-257.
[80] Palou, E.; Lopez-Malo, A.; Barbosa-Canovas, G. V.; Welti-Chanes, J.; Swanson, B. G., Oscillatory high hydrostatic pressure inactivation of Zygosaccharomyces bailii. J. Food Prot., 1998, 61 (9), 1213-1215.
[81] Pandya, Y.; Jewett, F. F.; Hoover, D. G., Concurrent effects of high hydrostatic-pressure, acidity and heat on the destruction and injury of yeasts. J. Food Prot., 1995, 58 (3), 301-304.
[82] Benito, A.; Ventoura, G.; Casadei, M.; Robinson, T.; Mackey, B., Variation in resistance of natural isolates of Escherichia coli O157 to high hydrostatic pressure, mild heat, and other stresses. Appl. Environ. Microbiol., 1999, 65 (4), 1564-1569.
[83] Garcia-Graells, C.; Masschalck, B.; Michiels, C. W., Inactivation of Escherichia coli in milk by high-hydrostatic-pressure treatment in combination with antimicrobial peptides. J. Food Prot., 1999, 62 (11), 1248-1254.
[84] McClements, J. M. J.; Patterson, M. F.; Linton, M., The effect of growth stage and growth temperature on high hydrostatic pressure inactivation of some psychrotrophic bacteria in milk. J. Food Prot., 2001, 64 (4), 514-522.
[85] Berlin, D. L.; Herson, D. S.; Hicks, D. T.; Hoover, D. G., Response of pathogenic Vibrio species to high hydrostatic pressure. Appl. Environ. Microbiol., 1999, 65 (6), 2776-2780.
[86] Linton, M.; McClements, J. M. J.; Patterson, M. F., Inactivation of Escherichia coli O157 : H7 in orange juice using a combination of high pressure and mild heat. J. Food Prot., 1999, 62 (3), 277-279.
[87] Gervilla, R.; Sendra, E.; Ferragut, V.; Guamis, B., Sensitivity of Staphylococcus aureus and Lactobacillus helveticus in ovine milk subjected to high hydrostatic pressure. J. Dairy Sci., 1999, 82 (6), 1099-1107.
[88] Kallscheuer, N.; Classen, T.; Drepper, T.; Marienhagen, J., Production of plant metabolites with applications in the food industry using engineered microorganisms. Curr. Opin. Biotechnol., 2019, 56, 7-17.
[89] Hussein, R. A.; El-Anssary, A. A., Plants Secondary Metabolites: The Key Drivers of the Pharmacological Actions of Medicinal Plants, in Herbal Medicine, P. F. Builders Ed. IntechOpen, 2018, 25-30.
[90] Bourgaud, F.; Gravot, A.; Milesi, S.; Gontier, E., Production of plant secondary metabolites: a historical perspective. Plant Sci., 2001, 161 (5), 839-851.
[91] Singer, A. C.; Crowley, D. E.; Thompson, I. P., Secondary plant metabolites in phytoremediation and biotransformation. Trends Biotechnol., 2003, 21 (3), 123-130.
[92] Wink, M., Plant secondary metabolism: Diversity, function and its evolution. Nat. Prod. Commun., 2008, 3 (8), 1205-1216.
[94] Kurek, J., Introductory Chapter: Alkaloids - Their Importance in Nature and for Human Life, in Alkaloids - Their Importance in Nature and for Human Life, J. Kurek Ed. IntechOpen, 2019.
[95] Debnath, B.; Singh, W.S.; Das, M.; Goswami, S.; Singh, M.K.; Maiti, D.; Manna, K. B., Role of plant alkaloids on human health: A review of biological activities. Mater. Today Chem., 2018, 9, 56-72.
[96] Cheynier, V., Phenolic compounds: from plants to foods. Phytochem. Rev., 2012, 11 (2-3), 153-177.
[97] Rupasinghe, H. P. V.; Nair, S. V. G.; Robinson, R. A., Chemopreventive Properties of Fruit Phenolic Compounds and Their Possible Mode of Actions, in Studies in natural products chemistry, vol. 42, Atta-ur-Rahman Ed. Elsevier, 2014, pp. 229-266.
[98] Burow, M.; Wittstock, U.; Gershenzon, J., Sulfur-Containing Secondary Metabolites and Their Role in Plant Defense, in Sulfur Metabolism in Phototrophic Organisms, R. Hell, C. Dahl, D. Knaff, and T. Leustek Eds. Dordrecht: Springer, 2008, pp. 201-222.
[99] Perveen, S., Introductory Chapter: Terpenes and Terpenoids, in Terpenes and Terpenoids, S. Perveen and A. Al-Taweel Eds. IntechOpen, 2018.
[100] Tholl, D., Biosynthesis and Biological Functions of Terpenoids in Plants, in Biotechnology of Isoprenoids, vol. 148, J. Schrader and J. Bohlmann Eds., (Advances in Biochemical Engineering-Biotechnology. Cham: Springer International Publishing Ag, 2015, pp. 63-106.
[101] Sadeek A. M. M.; Abdallah, E. M., Phytochemical Compounds as Antibacterial Agents: A Mini Review. Glo. J. Pharm. Pharmac. Sci., 2019, 7 (4), 555720.
[102] Handa, S. S., An overview of extraction techniques for medicinal and aromatic plants, in Extraction technologies for medicinal and aromatic plants, S. S. Handa, S. P. S. Khanuja, G. Longo, and D. D. Rakesh Eds. Trieste: International Centre for Science and HighTechnology, 2008, 21-54.
[103] Huang, H. W.; Hsu, C. P.; Yang, B. B.; Wang, C. Y., Advances in the extraction of natural ingredients by high pressure extraction technology. Trends Food Sci. Technol., 2013, 33 (1), 54-62.
[104] Zhang, Q. W.; Lin, L. G.; Ye, W. C., Techniques for extraction and isolation of natural products: a comprehensive review. Chin. Med., 2018, 13, 20.
[105] Cseke, L. J.; Setzer, W. N.; Vogler, B.; Kirakosyan, A.; Kaufman, P. B., Traditional, analytical and preparative separations of natural products, in Natural products from plants, L. J. Cseke, A. Kirakosyan, P. B. Kaufman, S. L. Warber, J. A. Duke, and H. L. Brielmann Eds. Boca Raton: CRC Press, Taylor & Francis Group, 2006, pp. 263-317.
[106] Dembicki, H., Basin Modeling, in Practical Petroleum Geochemistry for Exploration and Production. Amsterdam: Elsevier Science Bv, 2017, pp. 273-308.
[107] Suna, S.; Tamer, C. E.; Ozcan-Sinir, G., Trends and possibilities of the usage of medicinal herbal extracts in beverage production, in Natural Beverages, 13, A. M. Grumezescu and A. M. Holban Eds., (Science of Beverages). Cambridge: Woodhead Publ Ltd, 2019, pp. 361-398.
[108] Wang, D. G.; Liu, W. Y.; Chen, G. T., A simple method for the isolation and purification of resveratrol from Polygonum cuspidatum. J. Pharm. Anal., 2013, 3 (4), 241–247.
[109] Chua, L. S.; Abd Latiff, N.; Mohamad, M., Reflux extraction and cleanup process by column chromatography for high yield of andrographolide enriched extract. J. Appl. Res. Med. Aromat. Plants, 2016, 3 (2), 64-70.
[110] Weggler, B. A.; Gruber, B.; Teehan, P.; Jaramillo, R.; Dorman, F. L., Chapter 5 - Inlets and sampling, in Separation Science and Technology, vol. Volume 12, N. H. Snow Ed. Academic Press, 2020, 141-203.
[111] Ibáñez, E.; Mendiola, J.A.; Castro-Puyana, M., Supercritical Fluid Extraction, in Encyclopedia of Food and Health, B. Caballero, P. M. Finglas, and F. Toldrá Eds. Academic Press, 2016, pp. 227-233.
[112] Costa Freitas, A. M.; Gomes da Silva, M. D. R.; Cabrita, M. J., Sampling Techniques for the Determination of Volatile Components in Grape Juice, Wine and Alcoholic Beverages, in Comprehensive Sampling and Sample Preparation, J. Pawliszyn Ed. Academic Press, 2012, pp. 27-41.
[113] Gachanja, A. N., Polycyclic Aromatic Hydrocarbons, Environmental Applications, in Encyclopedia of Analytical Science (Second Edition), P. Worsfold, A. Townshend, and C. Poole Eds. Elsevier, 2005, pp. 234-242.
[114] Mukherjee, P. K.; Harwansh, R. K.; Bahadur, S.; Chanda, J.; Biswas, S.; Banerjee, S., Enzyme inhibition assay for metabolic disorders-exploring leads from medicinal plants, in Animal Biotechnology, A. S. Verma and A. Singh Eds. Academic Press, 2020, pp. 631-653.
[115] Pingret, D.; Fabiano-Tixier, A. S.; Chemat, F., Accelerated Methods for Sample Preparation in Food, in Comprehensive Sampling and Sample Preparation, J. Pawliszyn Ed. Academic Press, 2012, pp. 441-455.
[117] Vinatoru, M.; Mason, T. J.; Calinescu, I., Ultrasonically assisted extraction (UAE) and microwave assisted extraction (MAE) of functional compounds from plant materials. Trac-Trend. Anal. Chem., 2017, 97, 159-178.
[118] Nawaz, H.; Shad, M. A.; Rehman, N.; Andaleeb, H.; Ullah, N., Effect of solvent polarity on extraction yield and antioxidant properties of phytochemicals from bean (Phaseolus vulgaris) seeds. Braz. J. Pharm. Sci., 2020, 56, e17129.
[119] Lin, F.; Giusti, M. M., Effects of solvent polarity and acidity on the extraction efficiency of isoflavones from soybeans (Glycine max). J. Agric. Food Chem., 2005, 53 (10), 3795-3800.
[120] Ramluckan, K.; Moodley, K. G.; Bux, F., An evaluation of the efficacy of using selected solvents for the extraction of lipids from algal biomass by the soxhlet extraction method. Fuel, 2014, 116, 103-108.
[121] Holser, R. A.; Abbott, T. P., Extraction of simmondsins from defatted jojoba meal using aqueous ethanol. Ind. Crops Prod., 1999, 10 (1), 41-46.
[122] Ncube, N. S.; Afolayan, A. J.; Okoh, A. I., Assessment techniques of antimicrobial properties of natural compounds of plant origin: current methods and future trends. Afr. J. Biotechnol., 2008, 7 (12), 1797-1806.
[123] Gurjar, M. S.; Ali, S.; Akhtar, M.; Singh, K. S., Efficacy of plant extracts in plant disease management. Agric. Sci., 2012, 3 (3), 19046.
[124] Bae, H.; Jayaprakasha, G. K.; Jifon, J.; Patil, B. S., Extraction efficiency and validation of an HPLC method for flavonoid analysis in peppers. Food Chem., 2012, 130 (3), 751-758.
[125] Perva-Uzunalic, A.; Skerget, M.; Knez, Z.; Weinreich, B.; Otto, F.; Gruner, S., Extraction of active ingredients from green tea (Camellia sinensis): Extraction efficiency of major catechins and caffeine. Food Chem., 2006, 96 (4), 597-605.
[126] Doran, P. M., Heterogeneous Reactions, in Bioprocess Engineering Principles, 2nd Edition. Amsterdam: Elsevier Science Bv, 2013, pp. 705-759.
[127] Cacace, J. E.; Mazza, G., Mass transfer process during extraction of phenolic compounds from milled berries. J. Food Eng., 2003, 59 (4), 379-389.
[128] Turker, N.; Erdogdu, F., Effects of pH and temperature of extraction medium on effective diffusion coefficient of anthocynanin pigments of black carrot (Daucus carota var. L.). J. Food Eng., 2006, 76 (4), 579-583.
[129] Jun, X., High-Pressure Processing as Emergent Technology for the Extraction of Bioactive Ingredients From Plant Materials. Crit. Rev. Food Sci. Nutr., 2013, 53 (8), 837-852.
[130] Scepankova, H.; Martins, M.; Estevinho, L.; Delgadillo, I.; Saraiva, J. A., Enhancement of Bioactivity of Natural Extracts by Non-Thermal High Hydrostatic Pressure Extraction, Plant Foods Hum. Nutr., 2018, 73 (4), 253-267.
[131] Xi, J.; Shen, D. J.; Zhao, S.; Lu, B. B.; Li, Y.; Zhang, R., Characterization of polyphenols from green tea leaves using a high hydrostatic pressure extraction. Int. J. Pharm., 2009, 382 (1-2), 139-143.
[132] Hu, Q. H.; Jiang, M.; Zhu, J. C., Research on technology of extraction of tea caffeine and polyphenols. Nat. Prod. Res. Dev. Chin., 1997, 9, 63-66.
[133] Ge, Y. Z.; Jin, H., New methods for extraction of tea polyphenols. Chin. Herb. Med., 1994, 25, 124-125.
[134] Sanchez-Moreno, C.; Plaza, L.; de Ancos, B.; Cano, M. P., Effect of combined treatments of high-pressure and natural additives on carotenoid extractability and antioxidant activity of tomato puree (Lycopersicum esculentum Mill.). Eur. Food Res. Technol., 2004, 219 (2), 151-160.
[135] de Ancos, B.; Sgroppo, S.; Plaza, L.; Cano, M. P., Possible nutritional and health-related value promotion in orange juice preserved by high-pressure treatment. J. Sci. Food Agric., 2002, 82 (8), 790-796.
[136] Plaza, L.; Colina, C.; de Ancos, B.; Sanchez-Moreno, C.; Cano, M. P., Influence of ripening and astringency on carotenoid content of high-pressure treated persimmon fruit (Diospyros kaki L.). Food Chem., 2012, 130 (3), 591-597.
[137] Plaza, L.; Sanchez-Moreno, C.; De Ancos, B.; Elez-Martinez, P.; Martin-Belloso, O.; Cano, M. P., Carotenoid and flavanone content during refrigerated storage of orange juice processed by high-pressure, pulsed electric fields and low pasteurization. LWT-Food Sci. Technol., 2011, 44 (4), 834-839.
[138] Lee, D.; Ghafoor, K.; Moon, S.; Kim, S.H.; Kim, S.; Chun, H.; Park, J., Phenolic compounds and antioxidant properties of high hydrostatic pressure and conventionally treated ginseng (Panax ginseng) products. Qual. Assur. Saf. Crop. Foods, 2015, 7 (4), 493-500.
[139] Chen, R. Z.; Meng, F. L.; Zhang, S. Q.; Liu, Z. Q., Effects of ultrahigh pressure extraction conditions on yields and antioxidant activity of ginsenoside from ginseng. Sep. Purif. Technol., 2009, 66 (2), 340-346.
[140] Prasad, K. N.; Yang, B.; Zhao, M. M.; Ruenroengklin, N.; Jiang, Y. M., Application of ultrasonication or high-pressure extraction of flavonoids from litchi fruit pericarp. J. Food Process Eng., 2009, 32 (6), 828-843.
[141] Prasad, K.N.; Hao, J.; Shi, J.; Liu, T.; Li, J.; Wei, X.; Qiu, S.; Xue, S.; Jiang, Y. K. N., Antioxidant and anticancer activities of high pressure-assisted extract of longan (Dimocarpus longan Lour.) fruit pericarp. Innov. Food Sci. Emerg. Tech., 2009, 10 (4), 413-419.
[142] Yang, B.; Jiang, Y. M.; Wang, R.; Zhao, M. M.; Sun, J., Ultra-high pressure treatment effects on polysaccharides and lignins of longan fruit pericarp. Food Chem., 2009, 112 (2), 428-431.
[143] Bi, H. M.; Zhang, S. Q.; Liu, C. J.; Wang, C. Z., High hydrostatic pressure extraction of salidroside from Rhodiola sachalinensis. J. Food Process Eng., 2009, 32 (1), 53-63.
[144] Moreira, S. A.; Silva, S.; Costa, E. M.; Saraiva, J. A.; Pintado, M., Effect of high hydrostatic pressure extraction on biological activities of stinging nettle extracts. Food Func., 2020, 11 (1), 921-931.
[145] Moreira, S.A.; Silva, S.; Costa, E.; Pinto, S.; Sarmento, B.; Saraiva, J.A.; Pintado, M., Effect of High Hydrostatic Pressure Extraction on Biological Activities and Phenolics Composition of Winter Savory Leaf Extracts. Antioxidants, 2020, 9 (9), 841.
[146] Pinela, J.; Prieto, M.A.; Barros, L.; Carvalho, A.M.; Oliveira, M.B.P.P.; Saraiva, J.A.; Ferreira, I.C.F.R., Cold extraction of phenolic compounds from watercress by high hydrostatic pressure: Process modelling and optimization. Sep. Purif. Technol., 2018, 192, 501-512.
[147] Briones-Labarca, V.; Giovagnoli-Vicuna, C.; Canas-Sarazua, R., Optimization of extraction yield, flavonoids and lycopene from tomato pulp by high hydrostatic pressure-assisted extraction. Food Chem., 2019, 278, 751-759.
[148] Briones-Labarca, V.; Plaza-Morales, M.; Giovagnoli-Vicuna, C.; Jamett, F., High hydrostatic pressure and ultrasound extractions of antioxidant compounds, sulforaphane and fatty acids from Chilean papaya (Vasconcellea pubescens) seeds: Effects of extraction conditions and methods. LWT-Food Sci. Technol., 2015, 60 (1), 525-534.
[149] Jamaludin, R.; Kim, D. S.; Salleh, L. M.; Lim, S. B., Optimization of high hydrostatic pressure extraction of bioactive compounds from noni fruits. J. Food Meas. Charact., 2020, 14 (5), 2810-2818.
[150] Grassino, A. N.; Pedisic, S.; Dragovic-Uzelac, V.; Karlovic, S.; Jezek, D.; Bosiljkov, T., Insight into High-Hydrostatic Pressure Extraction of Polyphenols from Tomato Peel Waste. Plant Foods Hum. Nutr., 2020, 75 (3), 427-433.
[151] Naghshineh, M.; Olsen, K.; Georgiou, C. A., Sustainable production of pectin from lime peel by high hydrostatic pressure treatment. Food Chem., 2013, 136 (2), 472-478.
[152] Fraeye, I.; Duvetter, T.; Doungla, E.; Van Loey, A.; Hendrickx, M., Fine-tuning the properties of pectin calcium gels by control of pectin fine structure, gel composition and environmental conditions. Trends Food Sci. Technol., 2010, 21 (5), 219-228.
[153] Willats, W. G. T.; Knox, P.; Mikkelsen, J. D., Pectin: new insights into an old polymer are starting to gel. Trends Food Sci. Technol., 2006, 17 (3), 97-104.
[154] Yapo, B. M.; Robert, C.; Etienne, I.; Wathelet, B.; Paquot, M., Effect of extraction conditions on the yield, purity and surface properties of sugar beet pulp pectin extracts. Food Chem., 2007, 100 (4), 1356-1364.
[155] Choi, Y.; Kim, W.; Lee, J. S.; Youn, S. J.; Lee, H.; Baik, M. Y., Enhanced Antioxidant Capacity of Puffed Turmeric (Curcuma longa L.) by High Hydrostatic Pressure Extraction (HHPE) of Bioactive Compounds. Foods, 2020, 9 (11), 1690.
[156] Briones-Labarca, V.; Giovagnoli-Vicu, C.; Figueroa-Alvarez, P.; Quispe-Fuentes, I.; Pérez-Won, M., Extraction of β-carotene, vitamin C and antioxidant compounds from Physalis peruviana (Cape Gooseberry) assisted by high hydrostatic pressure. Food Nutr. Sci., 2013, 4 (8), 35284.
[157] Campos, F. M.; Ribeiro, S. M. R.; Della Lucia, C. M.; Pinheiro-Sant'Ana, H. M.; Stringheta, P. C., Optimization of methodology to analyze ascorbic and dehydroascorbic acid in vegetables. Quim. Nova, 2009, 32 (1), 87-91.
[158] Teles, A. S. C.; Chavez, D. W. H.; Coelho, M. A. Z.; Rosenthal, A.; Gottschalk, L. M. F.; Tonon, R. V., Combination of enzyme-assisted extraction and high hydrostatic pressure for phenolic compounds recovery from grape pomace. J. Food Eng., 2021, 288, 110128.
[159] Altuner, E. M., A predictive modelling study for using high hydrostatic pressure, a food processing technology, for protein extraction. 9th International Conference on Predictive Modelling in Food, 2016, 7, 121-124.
[160] Zhang, S. Q.; Xi, J.; Wang, C. Z., High hydrostatic pressure extraction of flavonoids from propolis. J. Chem. Technol. Biotechnol., 2005, 80 (1), 50-54.
[161] Dornenburg, H.; Knorr, D., Cellular permeabilization of cultured plant-tissues by high electric-field pulses or ultra high-pressure for the recovery of secondary metabolites. Food Biotechnol., 1993, 7 (1), 35-48.
[162] Yan, H., Separation Engineering. Beijing: China Petrochemical Press, 2002.
[163] Ahmed, J.; Ramaswamy, H. S., High pressure processing of fruits and vegetables. Stewart Postharvest Rev., 2006, 1, 1-10.
[164] Chemat, F.; Vian, M. A.; Cravotto, G., Green Extraction of Natural Products: Concept and Principles. Int. J. Mol. Sci., 2012, 13 (7), 8615-8627.